Citation: Yu-Feng YAO, Jia-Yi YUAN, Ming SHEN, Bin DU, Rong XING. Synthesis and Photocatalytic Performance of ZnO Micro/Nano Materials Induced by Amphiphilic Calixarene[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 261-273. doi: 10.11862/CJIC.2022.022 shu

Synthesis and Photocatalytic Performance of ZnO Micro/Nano Materials Induced by Amphiphilic Calixarene

  • Corresponding author: Ming SHEN, shenming@yzu.edu.cn
  • Received Date: 25 July 2021
    Revised Date: 8 November 2021

Figures(10)

  • The amphiphilic calixarene, namely propyl resorcinol calix[4]arene (PRCA), hexyl resorcinol calix[4] arene (HRCA), and nonyl resorcinol calix[4]arene (NRCA), was used to induce the preparation of ZnO micro-nano structure under the refluxing condition seperately. The composition, morphology, and microstructure of the samples were analyzed by X-ray diffraction, scanning electron microscope, FT-IR, UV-Vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. Rhodamine B was used as a simulated pollutant to investigate the photocatalytic performance of the ZnO micro-nano structure protected by the resorcinol calix[4]arene. The characterization results showed that the size and morphology of ZnO particles could be controlled by the amphiphilic calixarenes which contained more carbon atoms in the linear alkyl chain connecting to the lower edge (HRCA and NRCA). However, the ability to control the morphology of ZnO was weak when without a protective agent and the resorcinol calix[4]arene with a short linear alkyl chain at the lower edge (PRCA). Under simulated sunlight, the photocatalytic efficiency of HRCA-ZnO and NRCA-ZnO was similar and higher than those of ZnO prepared without a protective agent and PRCA-ZnO.
  • 加载中
    1. [1]

      Youssef Z, Colombeau L, Yesmurzayeva N, Baros F. Dye-Sensitized Nanoparticles for Heterogeneous Photocatalysis: Cases Studies with TiO2, ZnO, Fullerene and Graphene for Water Purification[J]. Dyes Pigm., 2018,159:49-71. doi: 10.1016/j.dyepig.2018.06.002

    2. [2]

      HOU J H, CAI R, SHEN M, JIANG K. Preparation and Visible Light Photocatalysis of Porous Nanosheet Graphitic Carbon Nitride[J]. Chinese J.Inorg. Chem., 2018,34(3):467-474.  

    3. [3]

      WU Z Y, LI F J, LI C, ZHU W J, FANG M. Preparation and Photocatalytic Properties of Different Morphological ZnO@PANI Nanocomposites[J]. Chinese J. Inorg. Chem., 2013,29(10):2091-2098.  

    4. [4]

      Zyoud A, Dwikat M, Al-Shakhshir S, Ateeq S, Shteiwi J, Zu'Bi A, Helal M H S, Campet G, Park D, Kwon H, Kim T W, Kharoof M, Shawahna R, Hilal H S. Natural Dye-Sensitized ZnO Nano-Particles as Photo-catalysts in Complete Degradation of E. coli Bacteria and Their Organic Content[J]. J. Photochem. Photobiol. A, 2016,328:207-216. doi: 10.1016/j.jphotochem.2016.05.020

    5. [5]

      Prabavathy N, Shalini S, Balasundaraprabhu R, Velauthapillai D. Enhancement in the Photostability of Natural Dyes for Dye-Sensitized Solar Cell (DSSC) Applications: A Review[J]. Int. J. Energy Res., 2017,41:1372-1396. doi: 10.1002/er.3703

    6. [6]

      Idígoras J, Godfroy M, Joly D, Todinova A, Maldivi P, Oskam G, Demadrille R, Anta J A. Organic Dyes for the Sensitization of Nanostructured ZnO Photoanodes: Effect of the Anchoring Functions[J]. RSC Adv., 2015,5:68929-68938. doi: 10.1039/C5RA11762C

    7. [7]

      Radhik S, Thomas J. Solar Light Driven Photocatalytic Degradation of Organic Pollutants Using ZnO Nanorods Coupled with Photosensitive Molecules[J]. J. Environ. Chem. Eng., 2017,5:4239-4250. doi: 10.1016/j.jece.2017.08.013

    8. [8]

      Yao Y Y, Fan J, Shen M, Li W Z, Du B, Li X, Dai J T.. One-Step Synthesis of Hexylresorcinol Calix[4] arene-Capped ZnO-Ag Nanocomposites for Enhanced Degradation of Organic Pollutants[J]. J. Colloid Interface Sci., 2019,546:70-82. doi: 10.1016/j.jcis.2019.03.021

    9. [9]

      Tunstad L M, Sherman J C, Helgeson R C, Weiser J, Knobler C B, Cram D J, Bryant J A, Dalcanale E, Tucker J A. Host-Guest Complexation. 48. Octol Building Blocks for Cavitands and Carcerands[J]. J. Org. Chem., 1989,54:1305-1312.

    10. [10]

      Zhou H, Zhong S T, Shen M, Hou J H, Chen W X. Formamide-Assisted One-Pot Synthesis of a Bi/Bi2O2CO3 Heterojunction Photocatalyst with Enhanced Photocatalytic Activity[J]. J. Alloys Compd., 2018,769:301-310. doi: 10.1016/j.jallcom.2018.08.007

    11. [11]

      Zhang P, Wang Y, Zhang D X, Bai H, Tarasov V V. Calixarene-Functionalized Graphene Oxide Composites for Adsorption of Neodymium Ions from the Aqueous Phase[J]. RSC Adv., 2016,66:30384-30394.

    12. [12]

      Xu Y, Hao Q, Mandler D. Electrochemical Detection of Dopamine by a Calixarene-Cellulose Acetate Mixed Langmuir-Blodgett Monolayer[J]. Anal. Chim. Acta, 2018,1042:29-36. doi: 10.1016/j.aca.2018.08.019

    13. [13]

      Xu D Q, Bai Y W, Li Z R, Guo Y, Bai L. Enhanced Photodegradation Ability of Solvothermally Synthesized Metallic Copper Coated ZnO Microrods[J]. Colloids Surf. A, 2018,548:19-26. doi: 10.1016/j.colsurfa.2018.03.057

    14. [14]

      Gupta J, Barick K C, Bahadur D. Defect Mediated Photocatalytic Activity in Shape-Controlled ZnO Nanostructures[J]. J. Alloys Compd., 2011,509:6725-6730. doi: 10.1016/j.jallcom.2011.03.157

    15. [15]

      Sugiyam K, Esumi K, Koide Y.. Aqueous Properties of Resorcinol-Type Calix[4] arenes Bearing Four Alkyl Side Chains.[J]. Langmuir, 1996,12:6006-6010. doi: 10.1021/la960443+

    16. [16]

      Xie Y S, Zhang N, Tang Z R, Anpo M, Xu Y J. Tip-Grafted Ag-ZnO Nanorod Arrays Decorated with Au Clusters for Enhanced Photocatalysis[J]. Catal. Today, 2020,340:121-127. doi: 10.1016/j.cattod.2018.09.010

    17. [17]

      Zhang F, Zhang Y C, Zhang G S, Yang Z J, Dionysiou D D. Exceptional Synergistic Enhancement of the Photocatalytic Activity of SnS2 by Coupling with Polyaniline and N-Doped Reduced Graphene Oxide[J]. Appl. Catal. B, 2018,236:53-63. doi: 10.1016/j.apcatb.2018.05.002

    18. [18]

      Hou X, Wang L. Controllable Fabrication and Photocatalysis of ZnO/Au Nanohybrids via Regenerative Ion Exchange and Reduction Cycles[J]. RSC Adv., 2014,45694556951.

    19. [19]

      Jayabharathi J, Prabhakaran A, Thanikachalam V, Sundharesan M. Hybrid Organic-Inorganic Light Emitting Diodes: Effect of Ag-Doped ZnO[J]. J. Photochem. Photobiol. A, 2016,325:88-96. doi: 10.1016/j.jphotochem.2016.04.007

    20. [20]

      Lou Q P, Yu X Y, Lei B X, Chen H Y, Kuang D B, Su C Y. Reduced Graphene Oxide-Hierarchical ZnO Hollow Sphere Composites with Enhanced Photocurrent and Photocatalytic Activity[J]. J. Phys. Chem. C, 2012,116:8111-8117. doi: 10.1021/jp2113329

    21. [21]

      Akhavan O. Graphene Nanomesh by ZnO Nanorod Photocatalysts[J]. ACS Nano, 2010,4:4174-4180. doi: 10.1021/nn1007429

    22. [22]

      Xiang Y M, Li J, Liu X M, Cui Z D, Yang X J, Yeung K W K, Pan H B, Wu S L. Construction of Poly(lactic-co-glycolic acid)/ZnO Nanorods/Ag Nanoparticles Hybrid Coating on Ti Implants for Enhanced Antibacterial Activity and Biocompatibility[J]. Mater. Sci. Eng. C, 2017,79:629-637. doi: 10.1016/j.msec.2017.05.115

    23. [23]

      Mu J B, Shao C L, Guo Z C, Zhang Z Y, Zhang M Y, Zhang P, Chen B, Liu Y C. High Photocatalytic Activity of ZnO-Carbon Nanofiber Heteroarchitectures[J]. ACS Appl. Mater. Interfaces, 2011,3:590-596. doi: 10.1021/am101171a

    24. [24]

      Chen T T, Chang I C, Yang M H, Chiu H T, Lee C Y. The Exceptional Photo-Catalytic Activity of ZnO/RGO Composite via Metal and Oxygen Vacancies[J]. Appl. Catal. B, 2013,142-143:442-449. doi: 10.1016/j.apcatb.2013.05.059

    25. [25]

      Han X G, He H Z, Kuang Q, Zhou X, Zhang X H, T Xu, Xie Z X, Zheng L S. Controlling Morphologies and Tuning the Related Properties of Nano/Microstructured ZnO Crystallites[J]. J. Phys. Chem. C, 2009,37:584-589.

    26. [26]

      Feng Z Y, Ma Y X, Natarajan V, Zhao Q Q, Ma X C, Zhan J H. In-Situ Generation of Highly Dispersed Au Nanoparticles on Porous ZnO Nanoplates via Ion Exchange from Hydrozincite for VOCs Gas Sensing[J]. Sens. Actuators B, 2018,255:884-890. doi: 10.1016/j.snb.2017.08.138

    27. [27]

      Mou H Y, Song C X, Zhou Y H, Zhang B, Wang D B. Design and Synthesis of Porous Ag/ZnO Nanosheets Assemblies as Super Photocatalysts for Enhanced Visible-Light Degradation of 4-Nitrophenol and Hydrogen Evolution[J]. Appl. Catal. B, 2018,221:565-573. doi: 10.1016/j.apcatb.2017.09.061

    28. [28]

      Nagaraju G, Udayabhanu , Shivaraj , Prashanth S A, Shastri M, Yathish K V, Anupama C, Rangappa D. Electrochemical Heavy Metal Detection, Photocatalytic, Photoluminescence, Biodiesel Production and Antibacterial Activities of Ag-ZnO Nanomaterial[J]. Mater. Res. Bull., 2017,94:54-63. doi: 10.1016/j.materresbull.2017.05.043

    29. [29]

      Dipak C D, Kalita A, Bardaloi S, Kalita M P C. Influence of Capping Agent on Structural, Optical and Photocatalytic Properties of ZnS Nanocrystals[J]. J. Lumin., 2019,210:269-275. doi: 10.1016/j.jlumin.2019.02.033

    30. [30]

      Zhou H, Kalware K, Shen M, Zhong S T, Yao Y Y. Formamide-Assisted One-step Synthesis of BiOCOOH and Bi/BiOCOOH Micro-/Nanostructures with Tunable Morphologies and Composition and Their Photocatalytic Activities[J]. CrystEngComm, 2020,22:1368-1380. doi: 10.1039/C9CE01960J

    31. [31]

      Ma S L, Zhan S H, Xia Y G, Wang P F, Hou Q L, Zhou Q X. Enhanced Photocatalytic Bactericidal Performance and Mechanism with Novel Ag/ZnO/g-C3N4 Composite under Visible Light[J]. Catal. Today, 2019,330:179-188. doi: 10.1016/j.cattod.2018.04.014

    32. [32]

      Chen Y, Li J, Zhai B Y, Liang Y N. Enhanced Photocatalytic Degradation of RhB by Two-Dimensional Composite Photocatalyst[J]. Colloids Surf. A, 2019,568:429-435. doi: 10.1016/j.colsurfa.2019.02.007

    33. [33]

      Zeng J, Li Z L, Peng H, Zheng X. Core-Shell Sm2O3@ZnO Nano-Heterostructure for the Visible Light Driven Photocatalytic Performance[J]. Colloids Surf. A, 2019,560:244-251. doi: 10.1016/j.colsurfa.2018.10.023

    34. [34]

      Guo H, Niu C G, Wen X J, Zhang L, Liang C, Zhang X G, Guan D L, Tang N, Zeng G M. Construction of Highly Efficient and Stable Ternary AgBr/Ag/PbBiO2Br Z-Scheme Photocatalyst under Visible Light Irradiation: Performance and Mechanism Insight[J]. J. Colloid Interface Sci., 2018,513:852-865. doi: 10.1016/j.jcis.2017.12.010

    35. [35]

      SONG Q, LI L, LUO H X, LIU Y, YANG C L. Hierarchical Nanoflower-Ring Structure Bi2O3/(BiO)2CO3 Composite for Photocatalytic Degradation of Rhodamine B[J]. Chinese J. Inorg. Chem., 2017,33(7):1161-1171.  

    36. [36]

      ZHAO J J, ZHANG Z Z, CHEN X L, WANG B, DENG J Y, ZHANG D Q, LI H X. Microwave-Induced Assembly of CuS@MoS2 Core-Shell Nanotubes and Study on Their Photocatalytic Fenton-like Reactions[J]. Acta Chim. Sinica, 2020,78:961-967.  

    37. [37]

      LI X W, WANG B, YIN W X, DI J, XIA J X, ZHU W S, LI H M. Cu2+ Modified g-C3N4 Photocatalysts for Visible Light Photocatalytic Properties[J]. Acta Phys.-Chim. Sin., 2020,36(3):1-10.  

    38. [38]

      Zhao X H, Su S, Wu G L, Li C Z, Qin Z, Lou X D, Zhou J G. Facile Synthesis of the Flower-like Ternary Heterostructure of Ag/ZnO Encapsulating Carbon Spheres with Enhanced Photocatalytic Performance[J]. Appl. Surf. Sci., 2017,406:254-264. doi: 10.1016/j.apsusc.2017.02.155

    39. [39]

      Yu J J, Sun D P, Wang T H, Li F. Fabrication of Ag@AgCl/ZnO Submicron Wire Film Catalyst on Glass Substrate with Excellent Visible Light Photocatalytic Activity and Reusability[J]. Chem. Eng. J., 2018,334:225-236. doi: 10.1016/j.cej.2017.10.003

    40. [40]

      Liu L, Luo X, Li Y Z, Xu F, Gao Z B, Zhang X N, Song Y H, Xu H, Li H M. Facile Synthesis of Few-Layer g-C3N4/ZnO Composite Photocatalyst for Enhancing Visible Light Photocatalytic Performance of Pollutants Removal[J]. Colloids Surf. A, 2018,537:516-523. doi: 10.1016/j.colsurfa.2017.09.051

    41. [41]

      He Z, Sun C, Yang S G, Ding Y C, He H, Wang Z L. Photocatalytic Degradation of Rhodamine B by Bi2WO6 with Electron Accepting Agent under Microwave Irradiation: Mechanism and Pathway[J]. J. Hazard. Mater., 2009,162:1477-1486. doi: 10.1016/j.jhazmat.2008.06.047

    42. [42]

      Khandekar D C, Bhattacharyya A R, Bandyopadhyaya R. Role of Impregnated Nano-Photocatalyst (SnxTi(1-x)O2) inside Mesoporous Silica (SBA-15) for Degradation of Organic Pollutant (Rhodamine B) under UV Light[J]. J. Environ. Chem. Eng., 2019,7103433. doi: 10.1016/j.jece.2019.103433

    43. [43]

      Yu K, Yang S G, He H, Sun C, Gu C G, Ju Y M. Visible Light-Driven Photocatalytic Degradation of Rhodamine B over NaBiO3: Pathways and Mechanism[J]. J. Phys. Chem. A, 2009,113:10024-10032. doi: 10.1021/jp905173e

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    10. [10]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    12. [12]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    13. [13]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    14. [14]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    15. [15]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    17. [17]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    18. [18]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

Metrics
  • PDF Downloads(6)
  • Abstract views(713)
  • HTML views(205)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return