Citation: Yu-Feng YAO, Jia-Yi YUAN, Ming SHEN, Bin DU, Rong XING. Synthesis and Photocatalytic Performance of ZnO Micro/Nano Materials Induced by Amphiphilic Calixarene[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 261-273. doi: 10.11862/CJIC.2022.022 shu

Synthesis and Photocatalytic Performance of ZnO Micro/Nano Materials Induced by Amphiphilic Calixarene

  • Corresponding author: Ming SHEN, shenming@yzu.edu.cn
  • Received Date: 25 July 2021
    Revised Date: 8 November 2021

Figures(10)

  • The amphiphilic calixarene, namely propyl resorcinol calix[4]arene (PRCA), hexyl resorcinol calix[4] arene (HRCA), and nonyl resorcinol calix[4]arene (NRCA), was used to induce the preparation of ZnO micro-nano structure under the refluxing condition seperately. The composition, morphology, and microstructure of the samples were analyzed by X-ray diffraction, scanning electron microscope, FT-IR, UV-Vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. Rhodamine B was used as a simulated pollutant to investigate the photocatalytic performance of the ZnO micro-nano structure protected by the resorcinol calix[4]arene. The characterization results showed that the size and morphology of ZnO particles could be controlled by the amphiphilic calixarenes which contained more carbon atoms in the linear alkyl chain connecting to the lower edge (HRCA and NRCA). However, the ability to control the morphology of ZnO was weak when without a protective agent and the resorcinol calix[4]arene with a short linear alkyl chain at the lower edge (PRCA). Under simulated sunlight, the photocatalytic efficiency of HRCA-ZnO and NRCA-ZnO was similar and higher than those of ZnO prepared without a protective agent and PRCA-ZnO.
  • 加载中
    1. [1]

      Youssef Z, Colombeau L, Yesmurzayeva N, Baros F. Dye-Sensitized Nanoparticles for Heterogeneous Photocatalysis: Cases Studies with TiO2, ZnO, Fullerene and Graphene for Water Purification[J]. Dyes Pigm., 2018,159:49-71. doi: 10.1016/j.dyepig.2018.06.002

    2. [2]

      HOU J H, CAI R, SHEN M, JIANG K. Preparation and Visible Light Photocatalysis of Porous Nanosheet Graphitic Carbon Nitride[J]. Chinese J.Inorg. Chem., 2018,34(3):467-474.  

    3. [3]

      WU Z Y, LI F J, LI C, ZHU W J, FANG M. Preparation and Photocatalytic Properties of Different Morphological ZnO@PANI Nanocomposites[J]. Chinese J. Inorg. Chem., 2013,29(10):2091-2098.  

    4. [4]

      Zyoud A, Dwikat M, Al-Shakhshir S, Ateeq S, Shteiwi J, Zu'Bi A, Helal M H S, Campet G, Park D, Kwon H, Kim T W, Kharoof M, Shawahna R, Hilal H S. Natural Dye-Sensitized ZnO Nano-Particles as Photo-catalysts in Complete Degradation of E. coli Bacteria and Their Organic Content[J]. J. Photochem. Photobiol. A, 2016,328:207-216. doi: 10.1016/j.jphotochem.2016.05.020

    5. [5]

      Prabavathy N, Shalini S, Balasundaraprabhu R, Velauthapillai D. Enhancement in the Photostability of Natural Dyes for Dye-Sensitized Solar Cell (DSSC) Applications: A Review[J]. Int. J. Energy Res., 2017,41:1372-1396. doi: 10.1002/er.3703

    6. [6]

      Idígoras J, Godfroy M, Joly D, Todinova A, Maldivi P, Oskam G, Demadrille R, Anta J A. Organic Dyes for the Sensitization of Nanostructured ZnO Photoanodes: Effect of the Anchoring Functions[J]. RSC Adv., 2015,5:68929-68938. doi: 10.1039/C5RA11762C

    7. [7]

      Radhik S, Thomas J. Solar Light Driven Photocatalytic Degradation of Organic Pollutants Using ZnO Nanorods Coupled with Photosensitive Molecules[J]. J. Environ. Chem. Eng., 2017,5:4239-4250. doi: 10.1016/j.jece.2017.08.013

    8. [8]

      Yao Y Y, Fan J, Shen M, Li W Z, Du B, Li X, Dai J T.. One-Step Synthesis of Hexylresorcinol Calix[4] arene-Capped ZnO-Ag Nanocomposites for Enhanced Degradation of Organic Pollutants[J]. J. Colloid Interface Sci., 2019,546:70-82. doi: 10.1016/j.jcis.2019.03.021

    9. [9]

      Tunstad L M, Sherman J C, Helgeson R C, Weiser J, Knobler C B, Cram D J, Bryant J A, Dalcanale E, Tucker J A. Host-Guest Complexation. 48. Octol Building Blocks for Cavitands and Carcerands[J]. J. Org. Chem., 1989,54:1305-1312.

    10. [10]

      Zhou H, Zhong S T, Shen M, Hou J H, Chen W X. Formamide-Assisted One-Pot Synthesis of a Bi/Bi2O2CO3 Heterojunction Photocatalyst with Enhanced Photocatalytic Activity[J]. J. Alloys Compd., 2018,769:301-310. doi: 10.1016/j.jallcom.2018.08.007

    11. [11]

      Zhang P, Wang Y, Zhang D X, Bai H, Tarasov V V. Calixarene-Functionalized Graphene Oxide Composites for Adsorption of Neodymium Ions from the Aqueous Phase[J]. RSC Adv., 2016,66:30384-30394.

    12. [12]

      Xu Y, Hao Q, Mandler D. Electrochemical Detection of Dopamine by a Calixarene-Cellulose Acetate Mixed Langmuir-Blodgett Monolayer[J]. Anal. Chim. Acta, 2018,1042:29-36. doi: 10.1016/j.aca.2018.08.019

    13. [13]

      Xu D Q, Bai Y W, Li Z R, Guo Y, Bai L. Enhanced Photodegradation Ability of Solvothermally Synthesized Metallic Copper Coated ZnO Microrods[J]. Colloids Surf. A, 2018,548:19-26. doi: 10.1016/j.colsurfa.2018.03.057

    14. [14]

      Gupta J, Barick K C, Bahadur D. Defect Mediated Photocatalytic Activity in Shape-Controlled ZnO Nanostructures[J]. J. Alloys Compd., 2011,509:6725-6730. doi: 10.1016/j.jallcom.2011.03.157

    15. [15]

      Sugiyam K, Esumi K, Koide Y.. Aqueous Properties of Resorcinol-Type Calix[4] arenes Bearing Four Alkyl Side Chains.[J]. Langmuir, 1996,12:6006-6010. doi: 10.1021/la960443+

    16. [16]

      Xie Y S, Zhang N, Tang Z R, Anpo M, Xu Y J. Tip-Grafted Ag-ZnO Nanorod Arrays Decorated with Au Clusters for Enhanced Photocatalysis[J]. Catal. Today, 2020,340:121-127. doi: 10.1016/j.cattod.2018.09.010

    17. [17]

      Zhang F, Zhang Y C, Zhang G S, Yang Z J, Dionysiou D D. Exceptional Synergistic Enhancement of the Photocatalytic Activity of SnS2 by Coupling with Polyaniline and N-Doped Reduced Graphene Oxide[J]. Appl. Catal. B, 2018,236:53-63. doi: 10.1016/j.apcatb.2018.05.002

    18. [18]

      Hou X, Wang L. Controllable Fabrication and Photocatalysis of ZnO/Au Nanohybrids via Regenerative Ion Exchange and Reduction Cycles[J]. RSC Adv., 2014,45694556951.

    19. [19]

      Jayabharathi J, Prabhakaran A, Thanikachalam V, Sundharesan M. Hybrid Organic-Inorganic Light Emitting Diodes: Effect of Ag-Doped ZnO[J]. J. Photochem. Photobiol. A, 2016,325:88-96. doi: 10.1016/j.jphotochem.2016.04.007

    20. [20]

      Lou Q P, Yu X Y, Lei B X, Chen H Y, Kuang D B, Su C Y. Reduced Graphene Oxide-Hierarchical ZnO Hollow Sphere Composites with Enhanced Photocurrent and Photocatalytic Activity[J]. J. Phys. Chem. C, 2012,116:8111-8117. doi: 10.1021/jp2113329

    21. [21]

      Akhavan O. Graphene Nanomesh by ZnO Nanorod Photocatalysts[J]. ACS Nano, 2010,4:4174-4180. doi: 10.1021/nn1007429

    22. [22]

      Xiang Y M, Li J, Liu X M, Cui Z D, Yang X J, Yeung K W K, Pan H B, Wu S L. Construction of Poly(lactic-co-glycolic acid)/ZnO Nanorods/Ag Nanoparticles Hybrid Coating on Ti Implants for Enhanced Antibacterial Activity and Biocompatibility[J]. Mater. Sci. Eng. C, 2017,79:629-637. doi: 10.1016/j.msec.2017.05.115

    23. [23]

      Mu J B, Shao C L, Guo Z C, Zhang Z Y, Zhang M Y, Zhang P, Chen B, Liu Y C. High Photocatalytic Activity of ZnO-Carbon Nanofiber Heteroarchitectures[J]. ACS Appl. Mater. Interfaces, 2011,3:590-596. doi: 10.1021/am101171a

    24. [24]

      Chen T T, Chang I C, Yang M H, Chiu H T, Lee C Y. The Exceptional Photo-Catalytic Activity of ZnO/RGO Composite via Metal and Oxygen Vacancies[J]. Appl. Catal. B, 2013,142-143:442-449. doi: 10.1016/j.apcatb.2013.05.059

    25. [25]

      Han X G, He H Z, Kuang Q, Zhou X, Zhang X H, T Xu, Xie Z X, Zheng L S. Controlling Morphologies and Tuning the Related Properties of Nano/Microstructured ZnO Crystallites[J]. J. Phys. Chem. C, 2009,37:584-589.

    26. [26]

      Feng Z Y, Ma Y X, Natarajan V, Zhao Q Q, Ma X C, Zhan J H. In-Situ Generation of Highly Dispersed Au Nanoparticles on Porous ZnO Nanoplates via Ion Exchange from Hydrozincite for VOCs Gas Sensing[J]. Sens. Actuators B, 2018,255:884-890. doi: 10.1016/j.snb.2017.08.138

    27. [27]

      Mou H Y, Song C X, Zhou Y H, Zhang B, Wang D B. Design and Synthesis of Porous Ag/ZnO Nanosheets Assemblies as Super Photocatalysts for Enhanced Visible-Light Degradation of 4-Nitrophenol and Hydrogen Evolution[J]. Appl. Catal. B, 2018,221:565-573. doi: 10.1016/j.apcatb.2017.09.061

    28. [28]

      Nagaraju G, Udayabhanu , Shivaraj , Prashanth S A, Shastri M, Yathish K V, Anupama C, Rangappa D. Electrochemical Heavy Metal Detection, Photocatalytic, Photoluminescence, Biodiesel Production and Antibacterial Activities of Ag-ZnO Nanomaterial[J]. Mater. Res. Bull., 2017,94:54-63. doi: 10.1016/j.materresbull.2017.05.043

    29. [29]

      Dipak C D, Kalita A, Bardaloi S, Kalita M P C. Influence of Capping Agent on Structural, Optical and Photocatalytic Properties of ZnS Nanocrystals[J]. J. Lumin., 2019,210:269-275. doi: 10.1016/j.jlumin.2019.02.033

    30. [30]

      Zhou H, Kalware K, Shen M, Zhong S T, Yao Y Y. Formamide-Assisted One-step Synthesis of BiOCOOH and Bi/BiOCOOH Micro-/Nanostructures with Tunable Morphologies and Composition and Their Photocatalytic Activities[J]. CrystEngComm, 2020,22:1368-1380. doi: 10.1039/C9CE01960J

    31. [31]

      Ma S L, Zhan S H, Xia Y G, Wang P F, Hou Q L, Zhou Q X. Enhanced Photocatalytic Bactericidal Performance and Mechanism with Novel Ag/ZnO/g-C3N4 Composite under Visible Light[J]. Catal. Today, 2019,330:179-188. doi: 10.1016/j.cattod.2018.04.014

    32. [32]

      Chen Y, Li J, Zhai B Y, Liang Y N. Enhanced Photocatalytic Degradation of RhB by Two-Dimensional Composite Photocatalyst[J]. Colloids Surf. A, 2019,568:429-435. doi: 10.1016/j.colsurfa.2019.02.007

    33. [33]

      Zeng J, Li Z L, Peng H, Zheng X. Core-Shell Sm2O3@ZnO Nano-Heterostructure for the Visible Light Driven Photocatalytic Performance[J]. Colloids Surf. A, 2019,560:244-251. doi: 10.1016/j.colsurfa.2018.10.023

    34. [34]

      Guo H, Niu C G, Wen X J, Zhang L, Liang C, Zhang X G, Guan D L, Tang N, Zeng G M. Construction of Highly Efficient and Stable Ternary AgBr/Ag/PbBiO2Br Z-Scheme Photocatalyst under Visible Light Irradiation: Performance and Mechanism Insight[J]. J. Colloid Interface Sci., 2018,513:852-865. doi: 10.1016/j.jcis.2017.12.010

    35. [35]

      SONG Q, LI L, LUO H X, LIU Y, YANG C L. Hierarchical Nanoflower-Ring Structure Bi2O3/(BiO)2CO3 Composite for Photocatalytic Degradation of Rhodamine B[J]. Chinese J. Inorg. Chem., 2017,33(7):1161-1171.  

    36. [36]

      ZHAO J J, ZHANG Z Z, CHEN X L, WANG B, DENG J Y, ZHANG D Q, LI H X. Microwave-Induced Assembly of CuS@MoS2 Core-Shell Nanotubes and Study on Their Photocatalytic Fenton-like Reactions[J]. Acta Chim. Sinica, 2020,78:961-967.  

    37. [37]

      LI X W, WANG B, YIN W X, DI J, XIA J X, ZHU W S, LI H M. Cu2+ Modified g-C3N4 Photocatalysts for Visible Light Photocatalytic Properties[J]. Acta Phys.-Chim. Sin., 2020,36(3):1-10.  

    38. [38]

      Zhao X H, Su S, Wu G L, Li C Z, Qin Z, Lou X D, Zhou J G. Facile Synthesis of the Flower-like Ternary Heterostructure of Ag/ZnO Encapsulating Carbon Spheres with Enhanced Photocatalytic Performance[J]. Appl. Surf. Sci., 2017,406:254-264. doi: 10.1016/j.apsusc.2017.02.155

    39. [39]

      Yu J J, Sun D P, Wang T H, Li F. Fabrication of Ag@AgCl/ZnO Submicron Wire Film Catalyst on Glass Substrate with Excellent Visible Light Photocatalytic Activity and Reusability[J]. Chem. Eng. J., 2018,334:225-236. doi: 10.1016/j.cej.2017.10.003

    40. [40]

      Liu L, Luo X, Li Y Z, Xu F, Gao Z B, Zhang X N, Song Y H, Xu H, Li H M. Facile Synthesis of Few-Layer g-C3N4/ZnO Composite Photocatalyst for Enhancing Visible Light Photocatalytic Performance of Pollutants Removal[J]. Colloids Surf. A, 2018,537:516-523. doi: 10.1016/j.colsurfa.2017.09.051

    41. [41]

      He Z, Sun C, Yang S G, Ding Y C, He H, Wang Z L. Photocatalytic Degradation of Rhodamine B by Bi2WO6 with Electron Accepting Agent under Microwave Irradiation: Mechanism and Pathway[J]. J. Hazard. Mater., 2009,162:1477-1486. doi: 10.1016/j.jhazmat.2008.06.047

    42. [42]

      Khandekar D C, Bhattacharyya A R, Bandyopadhyaya R. Role of Impregnated Nano-Photocatalyst (SnxTi(1-x)O2) inside Mesoporous Silica (SBA-15) for Degradation of Organic Pollutant (Rhodamine B) under UV Light[J]. J. Environ. Chem. Eng., 2019,7103433. doi: 10.1016/j.jece.2019.103433

    43. [43]

      Yu K, Yang S G, He H, Sun C, Gu C G, Ju Y M. Visible Light-Driven Photocatalytic Degradation of Rhodamine B over NaBiO3: Pathways and Mechanism[J]. J. Phys. Chem. A, 2009,113:10024-10032. doi: 10.1021/jp905173e

  • 加载中
    1. [1]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    2. [2]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    3. [3]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    4. [4]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    5. [5]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    6. [6]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    7. [7]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    8. [8]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    9. [9]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    10. [10]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    11. [11]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    12. [12]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    13. [13]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    14. [14]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    15. [15]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    16. [16]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    17. [17]

      Jin ZHANGYuting WANGBin YUYuxin ZHONGYufeng ZHANG . Corn straw-derived carbon/BiOBr composite: Synthesis and photocatalytic degradation performance for rhodamine B. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1397-1408. doi: 10.11862/CJIC.20250028

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(7)
  • Abstract views(1016)
  • HTML views(292)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return