Citation: Lan YANG, Xin XIA, Dong-Huang WANG, Ai-Jun ZHOU. Co-precipitation Reaction Control of FeFe-Based Prussian Blue Cathode Material for Sodium-Ion Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(1): 111-118. doi: 10.11862/CJIC.2022.020 shu

Co-precipitation Reaction Control of FeFe-Based Prussian Blue Cathode Material for Sodium-Ion Batteries

Figures(5)

  • FeFe-based Prussian blue (NaFeHCF) is a promising cathode material for sodium-ion batteries (SIBs). However, how to effectively control the synthesis parameters to improve the cycling stability of NaFeHCF in sodiumion batteries remains to be addressed. In this work, NaFeHCF powders were prepared through the co-precipitation method, and the synergetic effects of a complexing agent (with or without sodium citrate) and reaction temperature (0-80 ℃) on the physical and electrochemical properties of NaFeHCF were investigated in detail. The results showed that NaFeHCF powders synthesized with the addition of a complexing agent and at a temperature slightly above room temperature (40 ℃) exhibited the most appropriate properties in terms of morphology, grain size, and crystallinity. Therefore, the SIB cathode using this material showed the highest cycling stability, being able to deliver a discharge capacity of 83.5 mAh·g-1 after 1 500 cycles at the current density of 120 mA·g-1 with capacity retention of 79.4%.
  • 加载中
    1. [1]

      Cai P, Zou K Y, Deng X L, Wang B W, Zheng M, Li L H, Hou H S, Zou G Q, Ji X B. Comprehensive Understanding of Sodium-Ion Capacitors: Definition, Mechanisms, Configurations, Materials, Key Technologies, and Future Developments[J]. Adv. Energy Mater., 2021,11(16)2003804. doi: 10.1002/aenm.202003804

    2. [2]

      Nayak P K, Yang L T, Brehm W, Adelhelm P. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises[J]. Angew. Chem. Int. Ed., 2018,57(1):102-120. doi: 10.1002/anie.201703772

    3. [3]

      Wang T Y, Su D W, Shanmukaraj D, Rojo T, Armand M, Wang G X. Electrode Materials for Sodium-Ion Batteries: Considerations on Crystal Structures and Sodium Storage Mechanisms[J]. Electrochem. Energy Rev., 2018,1(2):200-237. doi: 10.1007/s41918-018-0009-9

    4. [4]

      Xiao J, Li X, Tang K K, Wang D D, Long M Q, Gao H, Chen W H, Liu C T, Liu H, Wang G X. Recent Progress of Emerging Cathode Materials for Sodium Ion Batteries[J]. Mater. Chem. Front., 2021,5(10):3735-3764. doi: 10.1039/D1QM00179E

    5. [5]

      Li S F, Gu Z Y, Guo J Z, Hou X K, Yang X, Zhao B, Wu X L. Enhanced Electrode Kinetics and Electrochemical Properties of Low-Cost NaFe2PO4(SO4)2 via Ca2+ Doping as Cathode Material for Sodium-Ion Batteries[J]. J. Mater. Sci. Technol., 2021,78:176-182. doi: 10.1016/j.jmst.2020.10.047

    6. [6]

      Gu Z Y, Guo J Z, Zhao X X, Wang X T, Xie D, Sun Z H, Zhao C D, Liang H J, Li W H, Wu X L. High-Ionicity Fluorophosphate Lattice via Aliovalent Substitution as Advanced Cathode Materials in Sodium- Ion Batteries[J]. InfoMat, 2021,3(6):694-704. doi: 10.1002/inf2.12184

    7. [7]

      Wu H Y, Zou X, Wu X L. Nanoconstruction and Nanoeffect of Phos- phate-Based Cathode Materials for Advanced Sodium-Ion Batteries[J]. Nano Futures, 2020,4(4)042001. doi: 10.1088/2399-1984/abc103

    8. [8]

      ZHANG H X, LI S F, ZHAO B, HOU X K, WU X L. Research Pro- gresses on Iron-Based Cathode Materials for Sodium-Ion Bat[J]. Chinese J. Inorg. Chem., 2020,36(7):1205-1222.  

    9. [9]

      Zhou A J, Cheng W J, Wang W, Zhao Q, Xie J, Zhang W X, Gao H C, Xue L G, Li J Z. Hexacyanoferrate-Type Prussian Blue Analogs: Principles and Advances Toward High-Performance Sodium and Potassium Ion Batteries[J]. Adv. Energy Mater., 2021,11(2)2000943. doi: 10.1002/aenm.202000943

    10. [10]

      Qian J F, Wu C, Cao Y L, Ma Z F, Huang Y H, Ai X P, Yang H X. Prussian Blue Cathode Materials for Sodium-Ion Batteries and Other Ion Batteries[J]. Adv. Energy Mater., 2018,8(17)1702619. doi: 10.1002/aenm.201702619

    11. [11]

      Ma F, Li Q, Wang T Y, Zhang H G, Wu G. Energy storage Materials Derived from Prussian Blue Analogues[J]. Sci. Bull., 2017,62(2095/ 9273)358.  

    12. [12]

      Chen J S, Wei L, Mahmood A, Pei Z X, Zhou Z, Chen X C, Chen Y. Prussian Blue, Its Analogues and Their Derived Materials for Elec-trochemical Energy Storage and Conversion[J]. Energy Storage Mater., 2020,25:585-612. doi: 10.1016/j.ensm.2019.09.024

    13. [13]

      Wu X Y, Luo Y, Sun M Y, Qian J F, Cao Y L, Ai X P, Yang H X. Low-Defect Prussian Blue Nanocubes as High Capacity and Long Life Cathodes for Aqueous Na-Ion Batteries[J]. Nano Energy, 2015,13:117-123. doi: 10.1016/j.nanoen.2015.02.006

    14. [14]

      Liu Y, Qiao Y, Zhang W X, Li Z, Ji X, Miao L, Yuan L X, Hu X L, Huang Y H. Sodium Storage in Na-Rich NaxFeFe(CN)(6) Nanocubes[J]. Nano Energy, 2015,12:386-393. doi: 10.1016/j.nanoen.2015.01.012

    15. [15]

      You Y, Wu X L, Yin Y X, Guo Y G. High-Quality Prussian Blue Crystals as Superior Cathode Materials for Room-Temperature Sodium-Ion Batteries[J]. Energy Environ. Sci., 2014,7(5):1643-1647. doi: 10.1039/C3EE44004D

    16. [16]

      You Y, Yu X Q, Yin Y X, Nam K W, Guo Y G. Sodium Iron Hexacyanoferrate with High Na Content as a Na -Rich Cathode Material for Na-Ion Batteries[J]. Nano Res., 2015,8(1):117-128. doi: 10.1007/s12274-014-0588-7

    17. [17]

      Yang Y, Liu E S, Yan X M, Ma C R, Wen W, Liao X Z, Ma Z F. Influence of Structural Imperfection on Electrochemical Behavior of Prussian Blue Cathode Materials for Sodium Ion Batteries[J]. J. Electrochem. Soc., 2016,163(9):A2117-A2123. doi: 10.1149/2.0031610jes

    18. [18]

      Yan X M, Yang Y, Liu E S, Sun L Q, Wang H, Liao X Z, He Y S, Ma Z F. Improved Cycling Performance of Prussian Blue Cathode for Sodium Ion Batteries by Controlling Operation Voltage Range[J]. Electrochim. Acta, 2017,225:235-242. doi: 10.1016/j.electacta.2016.12.121

    19. [19]

      Chen R J, Huang Y X, Xie M, Zhang Q Y, Zhang X X, Li L, Wu F. Preparation of Prussian Blue Submicron Particles with a Pore Structure by Two-Step Optimization for Na-Ion Battery Cathodes[J]. ACS Appl. Mater. Interfaces, 2016,8(25):16078-16086. doi: 10.1021/acsami.6b04151

    20. [20]

      Huang Y X, Xie M, Zhang J T, Wang Z H, Jiang Y, Xiao G H, Li S J, Li L, Wu F, Chen R J. A Novel Border-Rich Prussian Blue Synthe- tized by Inhibitor Control as Cathode For Sodium Ion Batteries[J]. Nano Energy, 2017,39:273-283. doi: 10.1016/j.nanoen.2017.07.005

    21. [21]

      Kim D S, Yoo H D, Park M S, Kim H S. Boosting the Sodium Storage Capability of Prussian Blue Nanocubes by Overlaying PEDOT: PSS Layer[J]. J. Alloys Compd., 2019,791:385-390. doi: 10.1016/j.jallcom.2019.03.317

    22. [22]

      Wang W L, Gang Y, Hu Z, Yan Z C, Li W J, Li Y C, Gu Q F, Wang Z X, Chou S L, Liu H K, Dou S X. Reversible Structural Evolution of Sodium-Rich Rhombohedral Prussian Blue for Sodium-Ion Batteries[J]. Nat. Commun., 2020,11(1)980. doi: 10.1038/s41467-020-14444-4

    23. [23]

      Li W J, Chou S L, Wang J Z, Kang Y M, Wang J L, Liu Y, Gu Q F, Liu H K, Dou S X. Facile Method to Synthesize Na-Enriched Na1+xFeFe(CN)6 Frameworks as Cathode with Superior Electrochemical Performance for Sodium-Ion Batteries[J]. Chem. Mater., 2015,27(6):1997-2003. doi: 10.1021/cm504091z

    24. [24]

      Shen Z L, Guo S H, Liu C L, Sun Y P, Chen Z, Tu J, Liu S Y, Cheng J P, Xie J, Cao G S, Zhao X B. Na-Rich Prussian White Cathodes for Long-Life Sodium-Ion Batteries[J]. ACS Sustainable Chem. Eng., 2018,6(12):16121-16129. doi: 10.1021/acssuschemeng.8b02758

    25. [25]

      Yu S H, Shokouhimehr M, Hyeon T, Sung Y E. Iron Hexacyanoferrate Nanoparticles as Cathode Materials for Lithium and Sodium Rechargeable Batteries[J]. ECS Electrochem. Lett., 2013,2(4):A39-A41. doi: 10.1149/2.008304eel

    26. [26]

      Wang L, Song J, Qiao R M, Wray L A, Hossain M A, Chuang Y D, Yang W L, Lu Y H, Evans D, Lee J J, Vail S, Zhao X, Nishijima M, Kakimoto S, Goodenough J B. Rhombohedral Prussian White as Cathode for Rechargeable Sodium-Ion Batteries[J]. J. Am. Chem. Soc., 2015,137(7):2548-2554. doi: 10.1021/ja510347s

    27. [27]

      Li C, Zhang C, Xie J, Wang K B, Li J Z, Zhang Q C. Ferrocene-Based Metal-Organic Framework as a Promising Cathode in Lithium-Ion Battery[J]. Chem. Eng. J., 2021,404126463. doi: 10.1016/j.cej.2020.126463

    28. [28]

      Shen L, Wang Z X, Chen L Q. Prussian Blues as a Cathode Material for Lithium Ion Batteries[J]. Chem. Eur. J., 2014,20(39):12559-12562. doi: 10.1002/chem.201403061

    29. [29]

      Chen R J, Huang Y X, Xie M, Wang Z H, Ye Y S, Li L, Wu F. Chemical Inhibition Method to Synthesize Highly Crystalline Prussian Blue Analogs for Sodium-Ion Battery Cathodes[J]. ACS Appl. Mater. Interfaces, 2016,8(46):31669-31676. doi: 10.1021/acsami.6b10884

    30. [30]

      Ling C, Chen J J, Mizuno F. First-Principles Study of Alkali and Alkaline Earth Ion Intercalation in Iron Hexacyanoferrate: The Important Role of Ionic Radius[J]. J. Phys. Chem. C, 2013,117(41):21158-21165. doi: 10.1021/jp4078689

    31. [31]

      Yan C X, Zhao A L, Zhong F P, Feng X M, Chen W H, Qian J F, Ai X P, Yang H X, Cao Y L. A Low-Defect and Na-Enriched Prussian Blue Lattice with Ultralong Cycle Life for Sodium-Ion Battery Cathode[J]. Electrochim. Acta, 2020,332135533. doi: 10.1016/j.electacta.2019.135533

    32. [32]

      ZHUANG Q C, XU S D, QIU X Y, CUI Y L, FANG L, SUN S G. Diagnosis of Electrochemical Impedance Spectroscopy in Lithium Ion Batteries[J]. Progress in Chemistry, 2010,22(6):1044-1057.  

  • 加载中
    1. [1]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    2. [2]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    4. [4]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    7. [7]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    8. [8]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    9. [9]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    10. [10]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    13. [13]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    14. [14]

      Siwei Lv Tantian Tan Xinyue Li Siyan Zhang Mingyuan Zhang Minghao Li Hangshuo Guo Zhaorong Li Liangjie Dong Fengshuo Zhang Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034

    15. [15]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    16. [16]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    17. [17]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    18. [18]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    20. [20]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

Metrics
  • PDF Downloads(61)
  • Abstract views(3272)
  • HTML views(999)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return