Citation: Jing REN, Jin-Hui YAN, An-Yi ZHANG, Yu-Xing YAN, Cun-Cun WANG, Lin LI. pH Regulated Nanomedicine Based on Y-Type Molecular Sieve Loading Doxorubicin: Preparation and Interaction with MM-231 Cells[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(1): 93-102. doi: 10.11862/CJIC.2022.019 shu

pH Regulated Nanomedicine Based on Y-Type Molecular Sieve Loading Doxorubicin: Preparation and Interaction with MM-231 Cells

Figures(12)

  • To overcome the shortcomings of poor antitumor drug targeting, low efficacy, and high toxicity, a pH regulated drug delivery system (YMS-DOX) through hydrogen bonds and van der Waals force was constructed to acquire high drug loading capacity and better therapeutic efficiency based on Y-type molecular sieve (YMS) as nano-carrier and doxorubicin (DOX) as the model drug. The successful formation of YMS-DOX was confirmed by using UV-Vis, FT-IR, particle size and potential measurement, and fluorescence spectroscopy. Interestingly, with the assistance of citric acid buffer solution (pH=9.0), YMS nanocarrier loading DOX achieved nearly 99.61% loading efficiency. In vitro drug release showed that YMS had low premature drug release under physiological conditions (pH=7.4), while greatly enhanced in the tumor microenvironment (pH=4.5) 3.8 times compared to normal tissue, indicating YMSDOX can be effectively released in the tumor site. Excitingly, when dendritic (DC) cells and breast cancer (MM -231) cells were treated with YMS-DOX, the results demonstrated that YMS-DOX preferentially accumulated much more in tumor cells than in normal cells, which implies that YMS-DOX can selectively kill tumor cells. In addition, assessment by flow cytometry apoptosis assay illustrated that YMS-DOX could induce cell apoptosis and inhibit cell migration.
  • 加载中
    1. [1]

      Siegel R L, Miller K D, Jemal A. Cancer Statistics, 2019[J]. CA-CancerJ.Clin., 2019,69(1):7-34. doi: 10.3322/caac.21551

    2. [2]

      Siegel R L, Miller K D, Jemal A. Cancer Statistics, 2020[J]. CA-CancerJ.Clin., 2020,70(1):7-30. doi: 10.3322/caac.21590

    3. [3]

      Sethi A, Singh R P, Yadav N, Banerjee M. Synthesis, Spectroscopic Analysis (FT-IR, UV and NMR) and DFT Analysis of Novel Prodrugs of Pregnane, Their Apoptotic Activity in Cervical Cancer Cell Lines[J]. J.Mol. Struct., 2018,1166:54-62. doi: 10.1016/j.molstruc.2018.04.009

    4. [4]

      CHEN B Y, ZHANG Y R, WANG L, WANG F F. Microwave Tomog-raphy for Early Breast Cancer Detection Based on the Alternating Direction Implicit Finite Difference Time-Domain Method[J]. Acta Phys.Sin., 2016,65(14):144101-144110. doi: 10.7498/aps.65.144101

    5. [5]

      Li G C, Cao X Y, Li Y N, Qiu Y Y, Li Y N, Liu X J, Sun X X. MicroRNA-374b Inhibits Cervical Cancer Cell Proliferation and Induces Apopto-sis through the p38/ERK Signaling Pathway by Binding to JAM-2[J]. J.Cell. Physiol., 2018,233(9):7379-7390. doi: 10.1002/jcp.26574

    6. [6]

      LI L, XU X R, LI Y Q, ZHANG C F. Preparation of Targeting Nanodi-amond-Metaminopterone Drug System and Its Interaction with MCF-7 Cells[J]. Chem. J. Chinese Universities, 2019,40(9):1998-2004.  

    7. [7]

      Hoffman A S. The Origins and Evolution of"Controlled"Drug Deliv-ery Systems[J]. J. Controlled Release, 2008,132(3):153-163. doi: 10.1016/j.jconrel.2008.08.012

    8. [8]

      Langer R, Folkman J. Polymers for the Sustained Release of Proteins and Other Macromolecules[J]. Nature, 1976,263(5580):797-800. doi: 10.1038/263797a0

    9. [9]

      Das M, Datir S R, Singh R P, Jain S. Augmented Anticancer Activity of a Targeted, Intracellularly Activatable, Theranostic Nanomedicine Based on Fluorescent and Radiolabeled, Methotrexate - Folic Acid -Multiwalled Carbon Nanotube Conjugate[J]. Mol. Pharmaceutics, 2013,10(7):2543-2557. doi: 10.1021/mp300701e

    10. [10]

      Duncan B, Kim C, Rotello V M. Gold Nanoparticle Platforms as Drug and Biomacromolecule Delivery Systems[J]. J. Controlled Release, 2010,148(1):122-127. doi: 10.1016/j.jconrel.2010.06.004

    11. [11]

      REN Y S, GUO Y Y, LIU X Y, SONG J, ZHANG C. Platinum (Ⅳ) Prodrug-Grafted Phosphorothioate DNA and Its Self-assembled Nanostructure for Targeted Drug Delivery[J]. Chem. J. Chinese Universi-ties, 2020,41(8):1721-1730.  

    12. [12]

      LIU D, ZHU X J, JIANG M, CHEN H, LAN S P. Synthesis and Anti-tumor Activities of 3-[(4'-Morpholine)-carbonyl or ethoxycarbonyl]-4-anilinoqunolines[J]. Chem. J. Chinese Universities, 2012,33(10):2249-2255. doi: 10.7503/cjcu20111217

    13. [13]

      HUANG J, WANG D Y, LI S H, FAN H, FAN L Z. Red Fluorescent Carbon Quantum Dots for Diagnosis of Acidic Microenvironment in Tumors[J]. Acta Phys.-Chim. Sin., 2021,37(10)19050657.  

    14. [14]

      HAO W J, ZHANG J Q, SHANG Y Z, XU S H, LIU H L. Prepara-tion of Fluorescently Labeled pH - Sensitive Micelles for Controlled Drug Release[J]. Acta Phys.-Chim. Sin., 2016,32(10):2628-2635. doi: 10.3866/PKU.WHXB201606296

    15. [15]

      YANG Z, XIE A J, SHEN Y H. pH - Controlled Drug Release of Nitrogen Doped Carbon Dots Delivering Doxorubicine for Synergetic Photo-Thermal Therapy and Chemotherapy[J]. Chinese J. Inorg. Chem., 2018,34(10):1775-1782. doi: 10.11862/CJIC.2018.236 

    16. [16]

      Wen Y, Wang Y Z, Liu X L, Zhang W, Xiong X H, Han Z X, Liang X J. Camptothecin-Based Nanodrug Delivery Systems[J]. Cancer Biol.Med., 2017,14(4):363-370. doi: 10.20892/j.issn.2095-3941.2017.0099

    17. [17]

      Mochalin V N, Shenderova O, Ho D, Gogotsi Y. The Properties and Applications of Nanodiamonds[J]. Nat. Nanotechnol., 2012,7(1):11-23. doi: 10.1038/nnano.2011.209

    18. [18]

      Wang Z Q, Tian Z M, Dong Y, Li L, Tian L, Li Y Q, Yang B S. Nanodiamond - Conjugated Transferrin as Chemotherapeutic Drug Delivery[J]. Diam. Relat. Mater., 2015,58:84-93. doi: 10.1016/j.diamond.2015.06.008

    19. [19]

      Guan B, Zou F, Zhi J F. Nanodiamond as the pH-Responsive Vehicle for an Anticancer Drug[J]. Small, 2010,6(14):1514-1519. doi: 10.1002/smll.200902305

    20. [20]

      Toh T B, Lee D K, Hou W X, Abdullah L N, Nguyen J, Ho D, Chow E K H. Nanodiamond-Mitoxantrone Complexes Enhance Drug Retention in Chemoresistant Breast Cancer Cells[J]. Mol. Pharmaceutics, 2014,11(8):2683-2691. doi: 10.1021/mp5001108

    21. [21]

      Rao N V, Mane S R, Kishore A, Sarma J D, Shunmugam R. Norborn-ene Derived Doxorubicin Copolymers as Drug Carriers with pH Responsive Hydrazone Linker[J]. Biomacromolecules, 2012,13(1):221-230. doi: 10.1021/bm201478k

    22. [22]

      Fan J Q, Fang G, Zeng F, Wang X D, Wu S Z. Water - Dispersible Fullerene Aggregates as a Targeted Anticancer Prodrug with Both Chemo - and Photodynamic Therapeutic Actions[J]. Small, 2013,9(4):613-621. doi: 10.1002/smll.201201456

    23. [23]

      Vallet-Regi M, Ramila A, Del Real R P, Pérez-Pariente J. A New Property of MCM-41: Drug Delivery System[J]. Chem. Mater., 2001,13(2):308-311. doi: 10.1021/cm0011559

    24. [24]

      Zhai Q Z. Preparation and Controlled Release of Mesoporous MCM-41/Propranolol Hydrochloride Composite Drug[J]. J. Microencapsul., 2013,30(2):173-180. doi: 10.3109/02652048.2012.714409

    25. [25]

      Qin Q D, Xu Y. Enhanced Nitrobenzene Adsorption in Aqueous Solution by Surface Silylated MCM - 41[J]. Microporous MesoporousMater., 2016,232:143-150. doi: 10.1016/j.micromeso.2016.06.018

    26. [26]

      Campos E V R, Oliveira J L D, Fraceto L F, Singh B. Polysaccha-rides as Safer Release Systems for Agrochemicals[J]. Agron. SustainableDev., 2015,35(1):47-66. doi: 10.1007/s13593-014-0263-0

    27. [27]

      Rafi A A, Fakheri F, Mahkam M. Synthesis and Preparation of New pH-Sensitive Nanocomposite and Nanocapsule Based on"MCM-41/Poly Methacrylic Acid"as Drug Carriers[J]. Polym. Bull., 2016,73(10):2649-2659. doi: 10.1007/s00289-016-1627-1

    28. [28]

      QU F Y, ZHU G S, HUANG S Y, LI S G, QIU S L. Preparation and Sustained Release of a New Water-Soluble Drug Carrier System Cap-topril/Si-MCM-41[J]. Chem. J. Chinese Universities, 2004,25(12):2195-2198. doi: 10.3321/j.issn:0251-0790.2004.12.001

    29. [29]

      Arruebo M, Fernandez-Pacheco R, Irusta S, Arbiol J, Ibarra M R, Santamaria J. Sustained Release of Doxorubicin from Zeolite-Magnetite Nanocomposites Prepared by Mechanical Activation[J]. Nanotechnology, 2006,17:4057-4064. doi: 10.1088/0957-4484/17/16/011

    30. [30]

      Yang F, Wen X, Ke Q F, Xie X T, Guo Y P. pH-Responsive Mesopo-rous ZSM - 5 Zeolites/Chitosan Core - Shell Nanodisks Loaded with Doxorubicin Against Osteosarcoma[J]. Mater. Sci. Eng. C, 2018,85:142-153. doi: 10.1016/j.msec.2017.12.024

    31. [31]

      Wen X, Yang F, Ke Q F, Xie X T, Guo Y P. Hollow Mesoporous ZSM - 5 Zeolite/Chitosan Ellipsoids Loaded with Doxorubicin as pH-Responsive Drug Delivery Dystems Against Osteosarcoma[J]. J. Mater.Chem. B, 2017,5:7866-7876. doi: 10.1039/C7TB01830D

    32. [32]

      Abasian P, Radmansouri M, Jouybari M H, Ghasemi M V, Moham-madi A, Irani M, Jazi F S. Incorporation of Magnetic NaX Zeolite/ DOX into the PLA/Chitosan Nanofibers for Sustained Release of Doxorubicin Against Carcinoma Cells Death In Vitro[J]. Int. J. Biol.Macromol., 2019,121:398-406. doi: 10.1016/j.ijbiomac.2018.09.215

    33. [33]

      JIAO Y. Synthesis and Characterization of Self-Assembled Nano-Particle Mesozeolite Y. Taiyuan: Taiyuan University of Technology, 2019: 17-20

    34. [34]

      Li L, Tian L, Wang Y L, Zhao W J, Cheng F Q, Li Y Q, Yang B S. Smart pH-Responsive and High Doxorubicin Loading Nanodiamond for In Vivo Selective Targeting, Imaging, and Enhancement of Anti-cancer Therapy[J]. J. Mater. Chem. B, 2016,4:5046-5058. doi: 10.1039/C6TB00266H

    35. [35]

      Zhao W J, Wei S G, Zhao H M, Li Y Q, Wu R F, Wang J J. Enhanced Anticancer Activity of an Intracellularly Activatable Nanomedicine Based on GLYlated Nanodiamond[J]. Diam. Relat. Mater., 2017,77:171-180. doi: 10.1016/j.diamond.2017.07.003

    36. [36]

      LI Y Q, ZHAO H M, ZHAO W J, WEI S G. Preparation of Enzyme-Responsive Nanodiamond Drug-Loading System and Its Endocytosis Mechanism by Cells[J]. Journal of Shanxi University(Natural ScienceEdition), 2017,40(3):533-539.

  • 加载中
    1. [1]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    5. [5]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    6. [6]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    7. [7]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    11. [11]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    12. [12]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    13. [13]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    14. [14]

      Peiling Li Qing Feng Hongling Yuan Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022

    15. [15]

      Faqiong Zhao Xiaohang Qiu Yanping Ren Juanjuan Song Dongcheng Liu Xiuqiong Zeng Wenwei Zhang Mei Shi Min Hu Wan Li Yongxian Fan Yiru Wang Xiuyun Wang Weihong Li Yong Fan Jianrong Zhang Shuyong Zhang . The Use of pH Indicator Papers and pH Meters. University Chemistry, 2025, 40(5): 32-39. doi: 10.12461/PKU.DXHX202503099

    16. [16]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    19. [19]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    20. [20]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

Metrics
  • PDF Downloads(15)
  • Abstract views(1611)
  • HTML views(443)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return