Citation: Min LI, Hai-Peng WU, Sheng ZHANG, Yu-Fang LIU, Yong-Qiang CHEN, San-Ping CHEN. Replacement of Carboxylate Ligand Substituent on Modulation of Structures and Magnetic Properties in Salen-Type Dinuclear Dy(Ⅲ) Complexes[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(1): 171-180. doi: 10.11862/CJIC.2022.017 shu

Replacement of Carboxylate Ligand Substituent on Modulation of Structures and Magnetic Properties in Salen-Type Dinuclear Dy(Ⅲ) Complexes

Figures(7)

  • Three salen - type centrosymmetric dinuclear Dy (Ⅲ) complexes, [Dy2(Hhms)2(C(CH3)3COO)2(H2O)4](NO3)2 (1), [Dy2(Hhms)2(C14H9COO)2(C2H5OH)2(CH3OH)2][ZnCl4] (2), and [Dy2(Hhms)2(C6H3(NH2)2COO)2Cl2]·2CH3CN (3) (H2hms=(2-hydroxy-3-methoxybenzylidene)-semicarbazide), were isolated with different substituted carboxylic acid ligand, and were characterized structurally and magnetically. Structural analyses illustrate that the Dy (Ⅲ) ions in complexes 1 and 2 maintain similar monocapped square-antiprism geometries, but the coordination mode of carboxylate in 1 is different from that in 2; complexes 2 and 3 possess similar phenoxy oxygen and carboxylate bridged structure whereas the coordination geometries around the Dy(Ⅲ) ions are different between 3 and 2 due to the difference of coordinated small molecules. Magnetic characterizations reveal that significant single - molecule magnet (SMM) behavior was observed under zero dc field for complex 3, with an effective energy barrier to the reversal of magnetization of 96 K. Conversely, complex 1 only showed fast quantum tunneling relaxation even 2 was SMM-silent. Furthermore, the magneto-structural correlations in these Dy2 complexes were discussed. The results indicate that utility of carboxylate ligand substituent can give rise to good modulation in the molecular anisotropy and symmetry, hence the enhanced magnetic relaxation.
  • 加载中
    1. [1]

      Woodruff D N, Winpenny R E, Layfield R A. Lanthanide Single-Molecule Magnets[J]. Chem. Rev., 2013,113(7):5110-5148. doi: 10.1021/cr400018q

    2. [2]

      Bogani L, Wernsdorfer W. Molecular Spintronics Using Single-Molecule Magnets[J]. Nat. Mater., 2008,7(3):179-186. doi: 10.1038/nmat2133

    3. [3]

      Candini A, Klyatskaya S, Ruben M, Wernsdorfer W, Affronte M. Graphene Spintronic Devices with Molecular Nanomagnets[J]. Nano Lett., 2011,11(7):2634-2639. doi: 10.1021/nl2006142

    4. [4]

      Guo F S, Day B M, Chen Y C, Tong M L, Mansikkamäki A, Layfield R A. Magnetic Hysteresis up to 80 Kelvin in a Dysprosium Metallocene Single-Molecule Magnet[J]. Science, 2018,362(6421):1400-1403. doi: 10.1126/science.aav0652

    5. [5]

      Blagg R J, Ungur L, Tuna F, Speak J, Comar P, Collison D, Wernsdorfer W, McInnes E J, Chibotaru L F, Winpenny R E. Magnetic Relaxation Pathways in Lanthanide Single-Molecule Magnets[J]. Nat. Chem., 2013,5(8):673-678. doi: 10.1038/nchem.1707

    6. [6]

      Guo Y N, Xu G F, Wernsdorfer W, Ungur L, Guo Y, Tang J K, Zhang H J, Chibotaru L F, Powell A K. Strong Axiality And Ising Exchange Interaction Suppress Zero - Field Tunneling of Magnetization of an Asymmetric Dy2 Single - Molecule Magnet[J]. J. Am. Chem. Soc., 2011,133(31):11948-11951. doi: 10.1021/ja205035g

    7. [7]

      Habib F, Lin P H, Long J, Korobkov I, Wernsdorfer W, Murugesu M. The Use of Magnetic Dilution to Elucidate the Slow Magnetic Relaxation Effects of a Dy2 Single - Molecule Magnet[J]. J. Am. Chem. Soc., 2011,133(23):8830-8833. doi: 10.1021/ja2017009

    8. [8]

      Demir S, Gonzalez M I, Darago L E, Evans W J, Long J R. Giant Coercivity and High Magnetic Blocking Temperatures for N23- Radical-Bridged Dilanthanide Complexes upon Ligand Dissociation[J]. Nat. Commun., 2017,8(1)2144. doi: 10.1038/s41467-017-01553-w

    9. [9]

      Pineda E M, Chilton N F, Marx R, Dorfel M, Sells D O, Neugebauer P, Jiang S D. Direct Measurement of Dysprosium (Ⅲ)…Dysprosium(Ⅲ) Interactions in a Single-Molecule Magnet[J]. Nat. Commun., 2014,5(1)5243. doi: 10.1038/ncomms6243

    10. [10]

      Fernandez Garcia G, Guettas D, Montigaud V, Larini P, Sessoli R, Totti F, Cador O, Pilet G, Le Guennic B. A Dy4 Cubane: A New Member in the Single -Molecule Toroics Family[J]. Angew. Chem. Int. Ed., 2018,57(52):17089-17093. doi: 10.1002/anie.201810156

    11. [11]

      Morita T, Damjanovic M, Katoh K, Kitagawa Y, Yasuda N, Lan Y. Comparison of the Magnetic Anisotropy and Spin Relaxation Phenomenon of Dinuclear Terbium(Ⅲ) Phthalocyaninato Single-Molecule Magnets Using the Geometric Spin Arrangement[J]. J. Am. Chem. Soc., 2018,140(8):2995-3007. doi: 10.1021/jacs.7b12667

    12. [12]

      Wu H P, Li M, Xia Z Q, Montigaud V, Cador O, Le Guennic B, Ke H S, Wang W Y, Xie G, Chen S P, Gao S L. High Temperature Quantum Tunnelling of Magnetization and Thousand Kelvin Anisotropy Barrier in a Dy2 Single-Molecule Magnet[J]. Chem. Commun., 2021,57(3):371-374. doi: 10.1039/D0CC06993K

    13. [13]

      Zhu Z H, Guo M, Li X L, Tang J K. Recent Advance on Single Molecule Magnets[J]. Sci. China Chem., 2018,48(8):790-803.  

    14. [14]

      Kong M, Feng X, Wang J, Zhang Y Q, Song Y. Tuning Magnetic Anisotropy via Terminal Ligands along the Dy…Dy Orientation in Novel Centrosymmetric [Dy2] Single Molecule Magnets[J]. Dalton Trans., 2021,50(2):568-577. doi: 10.1039/D0DT03854G

    15. [15]

      Jin C Y, Li X L, Liu Z L, Mansikkamäki A, Tang J K. An Investigation into the Magnetic Interactions in a Series of Dy2 Single-Molecule Magnets[J]. Dalton Trans., 2020,49(30):10477-10485. doi: 10.1039/D0DT01926G

    16. [16]

      Liu J L, Chen Y C, Tong M L. Symmetry Strategies for High Performance Lanthanide - Based Single - Molecule Magnets[J]. Chem. Soc. Rev., 2018,47(7):2431-2453. doi: 10.1039/C7CS00266A

    17. [17]

      Su J, Yuan S, Li J, Wang H Y, Ge J Y, Drake H F, Leong C F, Yu F, D'Alessandro D M, Kurmoo M, Zuo J L, Zhou H C. Rare-Earth Metal Tetrathiafulvalene Carboxylate Frameworks as Redox - Switchable Single-Molecule Magnets[J]. Chem. Eur. J., 2021,27(2):622-627. doi: 10.1002/chem.202004883

    18. [18]

      Zhang C C, Ma X F, Cen P P, Jin X Y, Yang J H, Zhang Y Q, Ferrando-Soria J, Pardo E, Liu X Y. A Series of Lanthanide(Ⅲ) Metal-Organic Frameworks Derived From a Pyridyl-Dicarboxylate Ligand: Single-Molecule Magnet Behaviour and Luminescence Properties[J]. Dalton Trans., 2020,49(40):14123-14132. doi: 10.1039/D0DT02736G

    19. [19]

      Biswas S, Mandal L, Shen Y B, Yamashita M. Explorationof SMM Behavior of Ln2 Complexes Derived from Thianaphthene-2-carboxylic Acid[J]. Dalton Trans., 2019,48(37):14096-1410. doi: 10.1039/C9DT01984G

    20. [20]

      Li Y, Shang Q, Zhang Y Q, Yang E C, Zhao X J. Fine Tuning of the Anisotropy Barrier by Ligand Substitution Observed in Linear {Dy2Ni2} Clusters[J]. Chem. Eur. J., 2016,22(52):18840-18849. doi: 10.1002/chem.201603800

    21. [21]

      Li M, Wu H P, Wei Q, Ke H S, Yin B, Zhang S, Lv X Q, Xie G, Chen S P. Two {Zn2Dy} Complexes Supported by Monophenoxido/Dicarboxylate Bridges with Multiple Relaxation Processes: Carboxylato Ancillary Ligand-Controlled Magnetic Anisotropy in Square Antiprismatic Dy Species[J]. Dalton Trans., 2018,47(28):9482-9491. doi: 10.1039/C8DT01842A

    22. [22]

      Davies K, Bourne S A, Oliver C L. Solvent - and Vapor - Mediated Solid - State Transformations in 1, 3, 5 - Benzenetricarboxylate Metal-Organic Frameworks[J]. Cryst. Growth Des., 2012,12(4):1999-2003. doi: 10.1021/cg201707e

    23. [23]

      Cai S L, Zheng S R, Wen Z Z, Fan J, Zhang W G. Construction of Luminescent Three-Dimensional Ln(Ⅲ)-Zn(Ⅱ) Heterometallic Coordination Polymers Based on 2-Pyridyl Imidazole Dicarboxylate[J]. CrystEngComm, 2012,14(23):8236-8243. doi: 10.1039/c2ce25803j

    24. [24]

      Peng Y, Mereacre V, Anson C, Powell A. Tuning of Hula-Hoop Coordination Geometry in a Dy Dimer[J]. Inorganics, 2016,4(1)2. doi: 10.3390/inorganics4010002

    25. [25]

      Yang J W, Yang Z F, Chen P, Tian Y M, Sun W B. A Dy2 Dimer Embedded in One Salen-Type Ligand with Different Local Symmetries Behaves as Zero-Field Single-Molecule Magnet[J]. Z. Anorg. Allg. Chem., 2018,644(8/9):443-448.  

    26. [26]

      Wu H P, Li M, Zhang S, Ke H S, Zhang Y Q, Zhuang G L, Wang W Y, Wei Q, Xie G, Chen S P. Magnetic Interaction Affecting the Zero-Field Single-Molecule Magnet Behaviors in Isomorphic {Ni2Dy2} and {Co2Dy2} Tetranuclear Complexes[J]. Inorg. Chem., 2017,56(18):11387-11397. doi: 10.1021/acs.inorgchem.7b01840

    27. [27]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program[J]. J. Appl. Crystallogr., 2009,42(2):339-341. doi: 10.1107/S0021889808042726

    28. [28]

      Sheldrick G M A. A Short History of SHELX[J]. Acta Crystallogr. Sect. A, 2008,64(1):112-122. doi: 10.1107/S0108767307043930

    29. [29]

      Osa S, Kido T, Matsumoto N, Re N, Pochaba A, Mrozinski J A. A Tetranuclear 3d - 4f Single Molecule Magnet: [CuLTb (hfac)2]2[J]. J. Am. Chem. Soc., 2004,126(2):420-421. doi: 10.1021/ja037365e

    30. [30]

      Tang J K, Hewitt I, Madhu N T, Chastanet G, Wernsdorfer W, Anson C E, Benelli C, Sessoli R, Powell A K. Dysprosium Triangles Showing Single - Molecule Magnet Behavior of Thermally Excited Spin States[J]. Angew. Chem. Int. Ed., 2006,45(11):1729-1733. doi: 10.1002/anie.200503564

    31. [31]

      Guo Y N, Xu G F, Guo Y, Tang J K. Relaxation Dynamics of Dysprosium(Ⅲ) Single Molecule Magnets[J]. Dalton Trans., 2011,40(39):9953-9963. doi: 10.1039/c1dt10474h

    32. [32]

      Reta D, Chilton N F. Uncertainty Estimates For Magnetic Relaxation Times and Magnetic Relaxation Parameters[J]. Phys. Chem. Chem. Phys., 2019,21(42):23567-23575. doi: 10.1039/C9CP04301B

    33. [33]

      Chilton N F, Collison D, McInnes E J L, Winpenny R E P, Soncini A. An Electrostatic Model for the Determination of Magnetic Anisotropy in Dysprosium Complexes[J]. Nat. Commun., 2013,4(1)2551. doi: 10.1038/ncomms3551

    34. [34]

      Liu S S, Xu L, Jiang S D, Zhang Y Q, Meng Y S, Wang Z, Wang B W, Zhang W X, Xi Z, Gao S. Half-Sandwich Complexes of Dy: A Janus - Motif with Facile Tunability of Magnetism[J]. Inorg. Chem., 2015,54(11):5162-5168. doi: 10.1021/ic502734z

    35. [35]

      Habib F, Brunet G, Vieru V, Korobkov I, Chibotaru L F, Murugesu M. Significant Enhancement of Energy Barriers in Dinuclear Dysprosium Single - Molecule Magnets through Electron-Withdrawing Effects[J]. J. Am. Chem. Soc., 2013,135(36):13242-13245. doi: 10.1021/ja404846s

    36. [36]

      Chen Y X, Ma F, Chen X, Zhang Y H, Wang H L, Wang K, Qi D D, Sun H L, Jiang J Z. Bis(1, 8, 15, 22-tetrakis(3-pentyloxy)phthalocyaninato)terbium Double - Decker Single - Ion Magnets[J]. Inorg. Chem., 2019,58(4):2422-2429. doi: 10.1021/acs.inorgchem.8b02949

    37. [37]

      Zhang W Y, Zhang Y Q, Jiang S D, Sun W B, Li H F, Wang B W, Chen P, Yan P F, Gao S. Dramatic Impact of the Lattice Solvent on the Dynamic Magnetic Relaxation of Dinuclear Dysprosium Single-Molecule Magnets[J]. Inorg. Chem. Front., 2018,5(7):1575-1586. doi: 10.1039/C8QI00266E

    38. [38]

      Li X L, Li H, Chen D M, Wang C, Wu J F, Tang J K, Shi W, Cheng P. Planar Dy3+ Dy3 Clusters: Design, Structure and Axial Ligand Perturbed Magnetic Dynamics[J]. Dalton Trans., 2015,44(47):20316-20320. doi: 10.1039/C5DT03931B

    39. [39]

      Wu H P, Li M, Yin B, Xia Z Q, Ke H S, Wei Q, Xie G, Chen S P, Gao S L. Fine-Tuning the Type of Equatorial Donor Atom in Pentagonal Bipyramidal Dy(Ⅲ) Complexes to Enhance Single-Molecule Magnet Properties[J]. Dalton Trans., 2019,48(43):16384-16394. doi: 10.1039/C9DT03292D

    40. [40]

      Wang Y L, Han C B, Zhang Y Q, Liu Q Y, Liu C M, Yin S G. Giant Field Dependence of the Low Temperature Relaxation of the Magnetization in a Dysprosium(Ⅲ)-DOTA Complex[J]. Inorg. Chem., 2016,55(11):5578-5584. doi: 10.1021/acs.inorgchem.6b00653

    41. [41]

      Car P E, Perfetti M, Mannini M, Favre A, Caneschi A, Sessoli R. Magnetic Anisotropy in a Dysprosium/DOTA Single-Molecule Magnet: Beyond Simple Magneto-Structural Correlations[J]. Chem. Commun., 2011,47(13):3751-3753. doi: 10.1039/c0cc05850e

    42. [42]

      Cucinotta G, Perfetti M, Luzon J, Etienne M, Car P E, Caneschi A, Calvez G, Bernot K, Sessoli R. Magnetic Anisotropy and Spin-Parity Effect along the Series of Lanthanide Complexes with DOTA[J]. Angew. Chem. Int. Ed., 2012,51(7):1606-1610. doi: 10.1002/anie.201107453

  • 加载中
    1. [1]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    2. [2]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    3. [3]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    4. [4]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    5. [5]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    6. [6]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    7. [7]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    8. [8]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    9. [9]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    10. [10]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    11. [11]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    12. [12]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    13. [13]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    14. [14]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    15. [15]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    16. [16]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    17. [17]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    18. [18]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    19. [19]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    20. [20]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

Metrics
  • PDF Downloads(3)
  • Abstract views(700)
  • HTML views(80)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return