Citation: Hong-Xia WANG, Xin-Xing LI, Yu ZHOU. Constructing and Photocatalytic Performance of Flower-like CeO2/TiO2 Heterostructures[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(1): 127-136. doi: 10.11862/CJIC.2022.010 shu

Constructing and Photocatalytic Performance of Flower-like CeO2/TiO2 Heterostructures

  • Corresponding author: Hong-Xia WANG, hongxia0816@163.com
  • Received Date: 30 March 2021
    Revised Date: 29 October 2021

Figures(13)

  • A kind of three-dimensional flower-like CeO2/TiO2 heterojunction as photocatalysts was designed by the solvothermal method. The photocatalytic activity was evaluated by the decomposition of methyl orange (MO) under xenon lamp irradiation. The results showed that the flower-like structure was composed of thin nanosheets, on which many CeO2 particles were uniformly attached. The molar ratio of Ce to Ti (nCe/nTi) and the solvothermal time influenced on the photocatalytic performance. When nCe/nTi=0.1 and the solvothermal time was 6 h, the photocatalytic activity of CeO2/TiO2 reached the best, and the degradation rate reached 95% under xenon lamp irradiation for 50 min. The results suggested that the photocatalytic activity of CeO2/TiO2 heterojunction was greatly improved, compared to TiO2, which was mainly the function of heterojunction formed by CeO2 and TiO2, and was conducive to the separation of photogenerated electrons and holes.
  • 加载中
    1. [1]

      Nakata K, Fujishima A. TiO2 Photocatalysis: Design and Applica-tions[J]. J. Photochem. Photobiol. C, 2012,13(3):169-189. doi: 10.1016/j.jphotochemrev.2012.06.001

    2. [2]

      Xiong Z G, Dou H Q, Pan J H, Ma J Z, Xun C, Zhao X S. Synthesis of Mesoporous Anatase TiO2 with a Combined Template Method and Photocatalysis[J]. CrystEngComm, 2010,12(11):3455-3457. doi: 10.1039/c0ce00228c

    3. [3]

      Schneider J, Matsuoka M, Takeuchi M, Zhang J L, Horiuchi Y, Anpo M, Bahenmann D W. Understanding TiO2 Photocatalysis: Mechanisms and Materials[J]. Chem. Rev., 2014,114(19):9919-9986. doi: 10.1021/cr5001892

    4. [4]

      Ma Y, Wang X L, Jia Y S, Chen X B, Han H X, Li C. Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations[J]. Chem. Rev., 2014,114(19):9987-10043.  

    5. [5]

      Chen X B, Liu L L, Yu P Y, Mao Y. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrys-tals[J]. Science, 2011,331:746-750. doi: 10.1126/science.1200448

    6. [6]

      Zhang J, Xu L J, Zhu Z Q, Liu J Q. Synthesis and Properties of (Yb, N) - TiO2 Photocatalyst for Degradation of Methylene Blue (MB) under Visible Light Irradiation[J]. Mater. Res. Bull., 2015,70:358-364. doi: 10.1016/j.materresbull.2015.04.060

    7. [7]

      Zou X X, Li G D, Wang K X, Lu L, Su J, Chen J S. Light-Induced For-mation of Porous TiO2 With Superior Electron-Storing Capacity[J]. Chem. Commun., 2010,46:2112-2114. doi: 10.1039/b924840d

    8. [8]

      Kim M H, Baik J M, Zhang J P, Larson C, Li Y L, Stucky G D, Moskovits M, Wodtke A M. TiO2 Nanowire Growth Driven by Phos-phorus-Doped Nanocatalysis[J]. J. Phys. Chem. C, 2010,114(24):10697-10702. doi: 10.1021/jp1007335

    9. [9]

      Souni M E, Habouti S, Pfeiffer N, Lahmar A, Dietze M, Solterbeck C H. Brookite Formation in TiO2-Ag Nanocomosites and Visible-Light-Induced Templated Growth of Ag Nanostructures in TiO2[J]. Adv. Funct. Mater., 2010,20(3):377-385. doi: 10.1002/adfm.200900498

    10. [10]

      Ye J F, Liu W, Cai J G, Chen S, Zhao X W, Zhou H H, Qi L M. Nanoporous Anatase TiO2 Mesocrystals: Additive-Free Synthesis, Remarkable Crystalline-Phase Stability, and Improved Lithium Insertion Behavior[J]. J. Am. Chem. Soc., 2011,133(4):933-940. doi: 10.1021/ja108205q

    11. [11]

      Li G L, Chen Q W, Lan J. Facile Synthesis, Metastable Phase Induced Morphological Evolution and Crystal Ripening, and Structure-Dependent Photocatalytic Properties of 3D Hierarchical Anatase Superstructures[J]. ACS Appl. Mater. Interfaces, 2014,6(24):22561-22568. doi: 10.1021/am506684c

    12. [12]

      Pan X, Xu Y J. Defect Mediated Growth of Noble Metal (Ag, Pt and Pd) Nanoparticles on TiO2 with Oxygen Vacancies for Photocatalytic Redox Reactions under Visible Light[J]. J. Phys. Chem. C, 2013,117(35):17996-18005. doi: 10.1021/jp4064802

    13. [13]

      Choi H J, Kang M. Hydrogen Production from Methanol/Water Decomposition in a Liquid Photosystem Using the Anatase Structure of Cu Loaded TiO2[J]. Int. J. Hydrogen. Energy, 2007,32:3841-3848. doi: 10.1016/j.ijhydene.2007.05.011

    14. [14]

      Zhang L, Li L, Mou Z G, Li X F. Study on Microstructure and Cata-lytic Performance of B, C, N Co-dopped TiO2[J]. Procedia Eng., 2012,27:552-556. doi: 10.1016/j.proeng.2011.12.486

    15. [15]

      Yan J K, Gan G Y, Du J H, Yi J H. Formation Mechanism of Second-ary Phase in (La, Nb) Codoped TiO2 Ceramics Varistor[J]. ProcediaEng., 2012,27:1271-1283.  

    16. [16]

      Khaki M R D, Shafeeyan M S, Raman A A A, Daud W M A W. Eval-uating the Efficiency of Nano-Sized Cu Doped TiO2/ZnO Photocata-lyst under Visible Light Irradiation[J]. J. Mol. Liq., 2018,258:354-365. doi: 10.1016/j.molliq.2017.11.030

    17. [17]

      Wang K T, Lu N, Chu C W, Feng T Y, Kung C C, Tu W H, Yeh Y P, Francisco J S. Robust Sensitizer-Assisted Platinized Titanium Diox-ide in Photocatalytic Removal of 4-Chlorophenol in Water: Light Tunable Sensitizer[J]. J. Photoch. Photobio. A, 2018,358:100-110. doi: 10.1016/j.jphotochem.2018.02.031

    18. [18]

      Endo R, Siriwardena H D, Kondo A, Yamaoto C, Shimomura M. Structural and Chemical Analysis of TiO2 Nanotube Surface for Dye-Sensitized Solar Cells[J]. Appl. Surf. Sci., 2018,439:954-962. doi: 10.1016/j.apsusc.2018.01.124

    19. [19]

      YANG B Y, LI H, SHANG N Z, FENG C, GAO S T, WANG C. Visible-Light Responsive Photocatalyst g-C3N4@BiOCl with Hollow Flower-like Structure: Preparation and Photocatalytic Performance[J]. ChineseJ.Inorg. Chem., 2017,33(3):396-404.  

    20. [20]

      Rodrígueza D S, Medranob M G M, Barriosa H R V E. Photocatalytic Properties of BiOCl-TiO2 Composites for Phenol Photodegradation[J]. J.Environ. Chem. Eng., 2018,6:1601-1612. doi: 10.1016/j.jece.2018.01.061

    21. [21]

      Guo Q Y, Huang Y F, Xu H, Luo D, Huang F Y, Gu L, Wei Y L, Zhao H, Fan L Q, Wu J H. The Effects of Solvent on Photocatalytic Properties of Bi2WO6/TiO2 Heterojunction under Visible Light Irradi-ation[J]. Solid State Sci., 2018,78:95-106. doi: 10.1016/j.solidstatesciences.2018.02.013

    22. [22]

      Du Z F, Cheng C, Tan L, Lan J W, Jiang S X, Zhao L D, Guo R H. Enhanced Photocatalytic Activity of Bi2WO6/TiO2 Composite Coated Polyester Fabric under Visible Light Irradiation[J]. Appl. Surf. Sci., 2017,435:626-634.

    23. [23]

      Wang X Q, Wang F, Chen B, Cheng K, Wang J L, Zhang J J, Song H. Promotion of Phenol Photodecomposition and the Corresponding Decomposition Mechanism over g-C3N4/TiO2 Nanocomposites[J]. Appl.Surf. Sci., 2018,453:320-329. doi: 10.1016/j.apsusc.2018.05.082

    24. [24]

      Zhong R Y, Zhang Z S, Yi H Q, Zeng L, Tang C, Huang L M, Gu M. Covalently Bonded 2D/2D O-g-C3N4/TiO2 Heterojunction for Enhanced Visible-Light Photocatalytic Hydrogen Evolution[J]. Appl.Catal. B, 2018,237:1130-1138. doi: 10.1016/j.apcatb.2017.12.066

    25. [25]

      Li C Q, Sun Z M, Xue Y L, Yao G Y, Zheng S L. A Facile Synthesis of g-C3N4/TiO2 Hybrid Photocatalysts by Sol-Gel Method and Its Enhanced Photodegradation Towards Methylene Blue under Visible Light[J]. Adv. Powder Technol., 2016,27:330-337. doi: 10.1016/j.apt.2016.01.003

    26. [26]

      Su S, Ma J W, Zuo W L, Wang J, Liu L, Feng S, Liu T, Fu W Y, Yang H B. Nanoforest-like CdS/TiO2 Heterostructure Composite: Synthesis and Photoelectrochemical Application[J]. Chin. Phys. B, 2018,8:680-685.

    27. [27]

      Yang X D, Wang Y Q, Wang Z S, Lv X Z, Jia H X, Kong J H, Yu M H. Preparation of CdS/TiO2 Nanotube Arrays and the Enhanced Pho-tocatalytic Property[J]. Ceram. Int., 2016,42(6):7192-7202. doi: 10.1016/j.ceramint.2016.01.109

    28. [28]

      Zahoor M, Arshad A, Khan Y, Iqbal M, Bajwa S Z, Soomro R A, Ahmad I, Butt F K, Iqbal M Z, Wu A, Khan W S. Enhanced Photo-catalytic Performance of CeO2-TiO2 Nanocomposite for Degradation of Crystal Violet Dye and Industrial Waste Effluent[J]. Appl. Nanosci., 2018,8:1091-1099. doi: 10.1007/s13204-018-0730-z

    29. [29]

      Wang J, Shi Z N, Zhou R X. High Activity of CeO2-TiO2 Composites for Deep Oxidation of 1, 2-Dichlorethane[J]. J. Rare Earths, 2020,8:906-911.  

    30. [30]

      Fan Z H, Meng F M, Gong J F, Li H J, Hu Y D, Liu D R. Enhanced Photocatalytic Activity of Hierarchical Flower-like CeO2/TiO2 Heter-ostructures[J]. Mater. Lett., 2016,175:36-39. doi: 10.1016/j.matlet.2016.03.136

    31. [31]

      Parveen N, Ansari M O, Han T H, Cho M H. Simple and Rapid Syn-thesis of Ternary Polyaniline/Titanium Oxide/Graphene by Simulta-neous TiO2 Generation and Aniline Oxidation as Hybrid Materials for Supercapacitor Applications[J]. J. Solid State Electrochem., 2017,21:57-68. doi: 10.1007/s10008-016-3310-8

    32. [32]

      Liu R, Li H, Duan L, Shen H, Zhang Y, Zhao X. In-Situ Synthesis and Enhanced Visible Light Photocatalytic Activity of C-TiO2 Micro-spheres/Carbon Quantum Dots[J]. Ceram. Int., 2017,43(12):8648-8654. doi: 10.1016/j.ceramint.2017.03.184

    33. [33]

      Fiorenza R, Bellardita M, Barakat T, Scirè S, Palmisano L. Visible Light Photocatalytic Activity of Macro-mesoporous TiO2-CeO2 Inverse Opals[J]. J. Photoch. Photobio. A, 2018,352:25-34. doi: 10.1016/j.jphotochem.2017.10.052

    34. [34]

      Wang X Q, Xu H L, Luo X H, Li M, Dai M, Chen Q H, Song H. Enhanced Photocatalytic Properties of CeO2/TiO2 Heterostructures for Phenol Degradation[J]. Colloid Interface Sci. Commun., 2021,44:100476-100487. doi: 10.1016/j.colcom.2021.100476

    35. [35]

      Basha M H, Gopal O N. Solution Combustion Synthesis and Charac-terization of Phosphorus Doped TiO2-CeO2 Nanocomposite for Photo-catalytic Applicationsopals[J]. Mat. Sci. Eng. B, 2018,236:43-47.  

    36. [36]

      Tian J, Sang Y H, Zhao Z H, Zhou W J, Wang D Z, Kang X L, Liu H, Wang J Y, Chen S W, Cai H Q, Huang H. Enhanced Photocatalytic Performances of CeO2/TiO2 Nanobelt Heterostructures[J]. Small, 2013,9(22):3864-3872. doi: 10.1002/smll.201202346

  • 加载中
    1. [1]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    2. [2]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    3. [3]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    4. [4]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    5. [5]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    6. [6]

      Xin HeFeng LiuTao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621

    7. [7]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    8. [8]

      Zhongchao ZhouJian SongYinghao XieYuqian MaHong HuHui LiLei ZhangCharles H. Lawrie . DFT calculation for organic semiconductor-based gas sensors: Sensing mechanism, dynamic response and sensing materials. Chinese Chemical Letters, 2025, 36(6): 110906-. doi: 10.1016/j.cclet.2025.110906

    9. [9]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    10. [10]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    15. [15]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    16. [16]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    17. [17]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

    18. [18]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

    19. [19]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    20. [20]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

Metrics
  • PDF Downloads(15)
  • Abstract views(1257)
  • HTML views(304)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return