Citation: Sheng ZHU, Jian SHENG, Guo-Dong JIA, Han-Ding LIU, Yan LI. Synthesis and Modification of Mesoporous Carbon Nanomaterials[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(1): 1-13. doi: 10.11862/CJIC.2022.006 shu

Synthesis and Modification of Mesoporous Carbon Nanomaterials

  • Corresponding author: Yan LI, yanli@pku.edu.cn
  • Received Date: 29 August 2021
    Revised Date: 29 October 2021

Figures(7)

  • Mesoporous carbon nanomaterials have received tremendous attention in many areas because they have fast transport channels, high electrical conductivity, large specific surface area, and outstanding chemical stability. Realizing controllable synthesis and precise modification of mesoporous carbon nanomaterial is a hotspot and a focus of current research. Based on this, the research progress in the preparation and modification of mesoporous carbon nanomaterial is analyzed and summarized. The existing issues and future research direction are also discussed.
  • 加载中
    1. [1]

      LIU M X, MIAO L, LU W J, ZHU D Z, XU Z J, GAN L H, CHEN L W. Porous Carbon Materials: Design, Synthesis and Applications in Energy Storage and Conversion Devices[J]. Chin. Sci. Bull., 2017,62(6):590-605.  

    2. [2]

      Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez-Reinoso F, Rouquerol J, Sing K S. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report)[J]. Pure Appl. Chem., 2015,87(9/10):1051-1069.  

    3. [3]

      Roberts A D, Li X, Zhang H. Porous Carbon Spheres and Monoliths: Morphology Control, Pore Size Tuning and Their Applications as LiIon Battery Anode Materials[J]. Chem. Soc. Rev., 2014,43(13):4341-4356. doi: 10.1039/C4CS00071D

    4. [4]

      Luo X Y, Chen Y, Mo Y. A Review of Charge Storage in Porous Carbon-Based Supercapacitors[J]. New Carbon Mater., 2021,36(1):49-68. doi: 10.1016/S1872-5805(21)60004-5

    5. [5]

      JIAO R, SUN H X, WEI H J, MOU P, LI A. Research Progress of Porous Carbon Material Modification and Its Application in Fuel Cell[J]. New Chemical Materials, 2018,46(10):32-35.  

    6. [6]

      ZHAO M Q, SI M Y, NU E L, MI H Y. Research Progress on Adsorption Properties of Porous Carbon Materials to Heavy Metal Ions[J]. Journal of Materials Science and Engineering, 2014(2):301-306.  

    7. [7]

      Wang J G, Liu H, Sun H, Hua W, Wang H, Liu X, Wei B. One-Pot Synthesis of Nitrogen-Doped Ordered Mesoporous Carbon Spheres for High-Rate and Long-Cycle Life Supercapacitors[J]. Carbon, 2018,127:85-92. doi: 10.1016/j.carbon.2017.10.084

    8. [8]

      Zhu S, Sheng J, Chen Y, Ni J F, Li Y. Carbon Nanotubes for Flexible Batteries: Recent Progress and Future Perspective[J]. Natl. Sci. Rev., 2021,8(5).  

    9. [9]

      Zhao Q F, Lin Y Z, Han N, Li X, Geng H J, Wang X D, Cui Y, Wang S L. Mesoporous Carbon Nanomaterials in Drug Delivery and Biomedical Application[J]. Drug Deliv., 2017,24(2):94-107. doi: 10.1080/10717544.2017.1399300

    10. [10]

      WANG H W, WANG Y D, MAO Q L, AN G Q, CHE Q, ZHANG S J, YIN X. Sulfur-Doped Ordered Mesoporous Carbon as Fuel Cell Electrocatalyst for Oxygen Reduction[J]. Chinese J. Inorg. Chem., 2019,3:369-375. doi: 10.11862/CJIC.2019.056 

    11. [11]

      Zhao J H, Shan W D, Zhang P F, Dai S. Solvent-Free and Mechanochemical Synthesis of N-Doped Mesoporous Carbon from Tannin and Related Gas Sorption Property[J]. Chem. Eng. J., 2020,381122579. doi: 10.1016/j.cej.2019.122579

    12. [12]

      Park D H, Lakhi K S, Ramadass K, Kim M K, Talapaneni S N, Joseph S, Ravon U, Al-Bahily K, Vinu A. Energy Efficient Synthesis of Ordered Mesoporous Carbon Nitrides with a High Nitrogen Content and Enhanced CO2 Capture Capacity[J]. Chem. Eng. J., 2017,23(45):10753-10757.  

    13. [13]

      Lee J, Kim J, Hyeon T. Recent Progress in the Synthesis of Porous Carbon Materials[J]. Adv. Mater., 2006,18(16):2073-2094. doi: 10.1002/adma.200501576

    14. [14]

      Yuan D S, Yuan X L, Zou W J, Zeng F L, Huang X J, Zhou S L. Synthesis of Graphitic Mesoporous Carbon from Sucrose as a Catalyst Support for Ethanol Electro-Oxidation[J]. J. Mater. Chem. A, 2012,22(34):17820-17826. doi: 10.1039/c2jm33658h

    15. [15]

      Forse A C, Griffin J M, Merlet C, Carretero-Gonzalez J, Raji A R O, Trease N M, Grey C P. Direct Observation of Ion Dynamics in Supercapacitor Electrodes Using In Situ Diffusion NMR Spectroscopy[J]. Nat. Energy, 2017,2(3):1-7.  

    16. [16]

      Yao L, Wu Q, Zhang P X, Zhang J M, Wang D R, Li Y L, Ren X Z, Mi H W, Deng L B, Zheng Z J. Scalable 2D Hierarchical Porous Carbon Nanosheets for Flexible Supercapacitors with Ultrahigh Energy Density[J]. Adv. Mater., 2018,30(11)1706054. doi: 10.1002/adma.201706054

    17. [17]

      Benzigar M R, Talapaneni S N, Joseph S, Ramadass K, Singh G, Scaranto J, Ravon U, Al-Bahily K, Vinu A. Recent Advances in Functionalized Micro and Mesoporous Carbon Materials: Synthesis and Applications[J]. Chem. Soc. Rev., 2018,47(8):2680-2721. doi: 10.1039/C7CS00787F

    18. [18]

      GAO X L, LI S, XING W, YAN Z F. Quinone-Modified Mesoporous Carbon/Graphene Composite with Excellent Capacitive Performance[J]. Chinese J. Inorg. Chem., 2018,34(3):507-514.  

    19. [19]

      Tian M, Cui X L, Yuan M, Yang J, Ma J T, Dong Z P. Efficient Chemoselective Hydrogenation of Halogenated Nitrobenzenes over an Easily Prepared γ - Fe2O3 - Modified Mesoporous Carbon Catalyst[J]. Green Chem., 2017,19(6):1548-1554. doi: 10.1039/C6GC03386E

    20. [20]

      GAO X L, WANG D D, LI S, XING W, YAN Z F. Hydroquinone-Modified Mesoporous Carbon Nanospheres with Excellent Capacitive Performance[J]. J. Inorg. Mater., 2018,33:48-52.  

    21. [21]

      Sheng J, Zhu S, Jia G D, Liu X, Li Y. Carbon Nanotube Supported Bifunctional Electrocatalysts Containing Iron-Nitrogen-Carbon Active Sites for Zinc-Air Batteries. Nano Res., 2021, https://doi.org/10.1007/s12274-021-3369-0

    22. [22]

      Zhu S, Sheng J, Jia G D, Zhang Z Y, Guo J, Wang M, Ni J F, Li Y. Monolithic Flexible Supercapacitors Drawn with Nitrogen - Doped Carbon Nanotube-Graphene Ink[J]. Mater. Res. Bull., 2021,139111266. doi: 10.1016/j.materresbull.2021.111266

    23. [23]

      Sheng J, Li Y. Applications of Carbon Nanotubes in Oxygen Electrocatalytic Reactions. ACS Appl. Mater. Interfaces, 2011, https://doi.org/10.1021/acsami.1c08104

    24. [24]

      Zhu S, Ni J F, Li Y. Carbon Nanotube-Based Electrodes for Flexible Supercapacitors[J]. Nnao Res., 2020,13(7):1825-1841. doi: 10.1007/s12274-020-2729-5

    25. [25]

      Peng X W, Zhang L, Chen Z X, Zhong L X, Zhao D K, Chi X X, Zhao X, Li L G, Lu X H, Leng K, Liu C B, Liu W, Tang W, Loh K P. Hierarchically Porous Carbon Plates Derived from Wood as Bifunctional ORR/OER Electrodes[J]. Adv. Mater., 2019,31(16)1900341. doi: 10.1002/adma.201900341

    26. [26]

      Xin G X, Wang Y H, Jia S P, Tian P F, Zhou S Y, Zang J B. Synthesis of Nitrogen-Doped Mesoporous Carbon from Polyaniline with an F127 Template for High - Performance Supercapacitors[J]. Appl. Surf. Sci., 2017,422:654-660. doi: 10.1016/j.apsusc.2017.06.084

    27. [27]

      Kitagawa S. Metal - Organic Frameworks (MOFs)[J]. Chem. Soc. Rev., 2014,43(16):5415-5418. doi: 10.1039/C4CS90059F

    28. [28]

      Zhan X J, Chen Z, Zhang Q C. Recent Progress in Two-Dimensional COFs for Energy - Related Applications[J]. J. Mater. Chem. A, 2017,5(28):14463-14479. doi: 10.1039/C7TA02105D

    29. [29]

      Yang L, Zeng X F, Wang W C, Cao D P. Recent Progress in MOFDerived, Heteroatom - Doped Porous Carbons as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells[J]. Adv. Funct. Mater., 2018,28(7)1704537. doi: 10.1002/adfm.201704537

    30. [30]

      Xie Y D, Kocaefe D Y, Chen C Y, Kocaefe Y. Review of Research on Template Methods in Preparation of Nanomaterials[J]. J. Nanomater., 2016,20162302595.  

    31. [31]

      Lin T Q, Chen I W, Liu F X, Yang C Y, Bi H, Xu F F, Huang F W. Nitrogen - Doped Mesoporous Carbon of Extraordinary Capacitance for Electrochemical Energy Storage[J]. Science, 2015,350(6267)15081513.  

    32. [32]

      Yang Y, Liu Y X, Li Y, Deng B W, Yin B, Yang M B. Design of Compressible and Elastic N-Doped Porous Carbon Nanofiber Aerogels as Binder - Free Supercapacitor Electrodes[J]. J. Mater. Chem. A, 2020,8(33):17257-17265. doi: 10.1039/D0TA05423B

    33. [33]

      Zhu Y Y, Chen M M, Zhao Y, Zhao W, Wang C J. A Biomass- Derived Nitrogen - Doped Porous Carbon for High - Energy Supercapacitor[J]. Carbon, 2018,140:404-412. doi: 10.1016/j.carbon.2018.09.009

    34. [34]

      Zhao Z, Liu S L, Zhu J X, Xu J S, Li L, Huang Z Q, Zhang C, Liu T X. Hierarchical Nanostructures of Nitrogen - Doped Porous Carbon Polyhedrons Confined in Carbon Nanosheets for High - Performance Supercapacitors[J]. ACS Appl. Mater. Interfaces, 2018,10(23):19871-19880. doi: 10.1021/acsami.8b03431

    35. [35]

      Liang C, Hong K, Guiochon G A, Mays J W, Dai S. Synthesis of a Large-Scale Highly Ordered Porous Carbon Film by Self-Assembly of Block Copolymers[J]. Angew. Chem. Int. Ed., 2004,43(43):5785-5789. doi: 10.1002/anie.200461051

    36. [36]

      Chuenchom L, Kraehnert R, Smarsly B M. Recent Progress in SoftTemplating of Porous Carbon Materials[J]. Soft Matter, 2012,8(42):10801-10812. doi: 10.1039/c2sm07448f

    37. [37]

      Liu R L, Wan L, Liu S Q, Pan L X, Wu D Q, Zhao D Y. An InterfaceInduced Co-Assembly Approach towards Ordered Mesoporous Carbon/Graphene Aerogel for High - Performance Supercapacitors[J]. Adv. Funct. Mater., 2015,25(4):526-533. doi: 10.1002/adfm.201403280

    38. [38]

      Yang X, Lu P, Yu L, Pan P, Elzatahry A A, Alghamdi A, Luo W, Cheng X, Deng Y. An Efficient Emulsion-Induced Interface Assembly Approach for Rational Synthesis of Mesoporous Carbon Spheres with Versatile Architectures[J]. Adv. Funct. Mater., 2020,30(36)2002488. doi: 10.1002/adfm.202002488

    39. [39]

      Sun Z K, Deng Y H, Wei J, Gu D, Tu B, Zhao D Y. Hierarchically Ordered Macro -/Mesoporous Silica Monolith: Tuning Macropore Entrance Size for Size - Selective Adsorption of Proteins[J]. Chem. Mater., 2011,23(8):2176-2184. doi: 10.1021/cm103704s

    40. [40]

      Kueasook R, Rattanachueskul N, Chanlek N, Dechtrirat D, Watcharin W, Amornpitoksuk P, Chuenchom L. Green and Facile Synthesis of Hierarchically Porous Carbon Monoliths via Surface Self - Assembly on Sugarcane Bagasse Scaffold: Influence of Mesoporosity on Efficiency of Dye Adsorption[J]. Microporous Mesoporous Mater., 2020,296110005. doi: 10.1016/j.micromeso.2020.110005

    41. [41]

      Hasegawa G, Kanamori K, Kiyomura T, Kurata H, Abe T, Nakanishi K. Hierarchically Porous Carbon Monoliths Comprising Ordered Mesoporous Nanorod Assemblies for High-Voltage Aqueous Supercapacitors[J]. Chem. Mater., 2016,28(11):3944-3950. doi: 10.1021/acs.chemmater.6b01261

    42. [42]

      Xu Y X, Sheng K X, Li C, Shi G Q. Self - Assembled Graphene Hydrogel via a One-Step Hydrothermal Process[J]. ACS Nano, 2010,4(7):4324-4330. doi: 10.1021/nn101187z

    43. [43]

      Zhang F, Tang J, Wang Z, Qin L C. Graphene - Carbon Nanotube Composite Aerogel for Selective Detection of Uric Acid[J]. Chem. Phys. Lett., 2013,590:121-125. doi: 10.1016/j.cplett.2013.10.058

    44. [44]

      Bai H, Li C, Wang X L, Shi G Q. A pH-Sensitive Graphene Oxide Composite Hydrogel[J]. Chem. Commun., 2010,46(14):2376-2378. doi: 10.1039/c000051e

    45. [45]

      Bryning M B, Milkie D E, Islam M F, Hough L A, Kikkawa J M, Yodh A G. Carbon Nanotube Aerogels[J]. Adv. Mater., 2007,19(5)661664.

    46. [46]

      Zou J, Liu J, Karakoti A S, Kumar A, Joung D, Li Q, Khondaker S I, Seal S, Zhai L. Ultralight Multiwalled Carbon Nanotube Aerogel[J]. ACS Nano, 2010,4(12):7293-7302. doi: 10.1021/nn102246a

    47. [47]

      Lee H M, Kang H R, An K H, Kim H G, Kim B J. Comparative Studies of Porous Carbon Nanofibers by Various Activation Methods[J]. Carbon Lett., 2013,14(3):180-185. doi: 10.5714/CL.2013.14.3.180

    48. [48]

      Górka J, Jaroniec M. Hierarchically Porous Phenolic Resin - Based Carbons Obtained by Block Copolymer - Colloidal Silica Templating and Post - Synthesis Activation with Carbon Dioxide and Water Vapor[J]. Carbon, 2011,49(1):154-160. doi: 10.1016/j.carbon.2010.08.055

    49. [49]

      Wei L, Yushin G. Electrical Double Layer Capacitors with Activated Sucrose-Derived Carbon Electrodes[J]. Carbon, 2011,49(14):4830-4838. doi: 10.1016/j.carbon.2011.07.003

    50. [50]

      Wang J, Kaskel S. KOH Activation of Carbon - Based Materials for Energy Storage[J]. J. Mater. Chem., 2012,22(45):23710-23725. doi: 10.1039/c2jm34066f

    51. [51]

      Chen F, Yang J, Bai T, Long B, Zhou X Y. Biomass Waste-Derived Honeycomb - like Nitrogen and Oxygen Dual - Doped Porous Carbon for High Performance Lithium - Sulfur Batteries[J]. Electrochim. Acta, 2016,192:99-109. doi: 10.1016/j.electacta.2016.01.192

    52. [52]

      Sun H T, Mei L, Liang J F, Zhao Z P, Lee C, Fei H L, Ding M N, Lau J, Li M F, Wang C, Xu X, Hao G L, Papandrea B, Shakir I, Dunn B, Huang Y, Duan X F. Three - Dimensional Holey - Graphene/Niobia Composite Architectures for Ultrahigh-Rate Energy Storage[J]. Science, 2017,356(6338):599-604. doi: 10.1126/science.aam5852

    53. [53]

      Zhang Y, Zhang L Y, Zhou C W. Review of Chemical Vapor Deposition of Graphene and Related Applications[J]. Acc. Chem. Res., 2013,46(10):2329-2339. doi: 10.1021/ar300203n

    54. [54]

      Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H M. Three-Dimensional Flexible and Conductive Interconnected Graphene Networks Grown by Chemical Vapour Deposition[J]. Nat. Mater., 2011,10(6)424428.  

    55. [55]

      Park H, Kim J W, Hong S Y, Lee G, Kim D S, Oh J H, Jin S W, Jeong Y R, Oh S Y, Yun J Y. Microporous Polypyrrole-Coated Graphene Foam for High-Performance Multifunctional Sensors and Flexible Supercapacitors[J]. Adv. Funct. Mater., 2018,28(33)1707013. doi: 10.1002/adfm.201707013

    56. [56]

      Li P X, Shi E Z, Yang Y B, Shang Y Y, Peng Q Y, Wu S T, Wei J Q, Wang K L, Zhu H W, Yuan Q, Cao A Y, Wu D H. Carbon NanotubePolypyrrole Core-Shell Sponge and Its Application as Highly Compressible Supercapacitor Electrode[J]. Nano Res., 2014,7(2):209-218. doi: 10.1007/s12274-013-0388-5

    57. [57]

      Gui X C, Wei J Q, Wang K L, Cao A Y, Zhu H W, Jia Y, Shu Q K, Wu D H. Carbon Nanotube Sponges[J]. Adv. Mater., 2010,22(5):617-621. doi: 10.1002/adma.200902986

    58. [58]

      Zhong J, Yang Z, Mukherjee R, Thomas A V, Zhu K, Sun P, Lian J, Zhu H, Koratkar N. Carbon Nanotube Sponges as Conductive Networks for Supercapacitor Devices[J]. Nano Energy, 2013,2(5):1025-1030. doi: 10.1016/j.nanoen.2013.04.001

    59. [59]

      Ferrero G, Fuertes A, Sevilla M. N-Doped Porous Carbon Capsules with Tunable Porosity for High - Performance Supercapacitors[J]. J. Mater. Chem. A, 2015,3(6):2914-2923. doi: 10.1039/C4TA06022A

    60. [60]

      Hu C G, Dai L M. Doping of Carbon Materials for Metal-Free Electrocatalysis[J]. Adv. Mater., 2019,31(7)1804672. doi: 10.1002/adma.201804672

    61. [61]

      Guo J J, Huo J J, Liu Y, Wu W J, Wang Y, Wu M H, Liu H, Wang G X. Nitrogen - Doped Porous Carbon Supported Nonprecious Metal Single-Atom Electrocatalysts: From Synthesis to Application[J]. Small Methods, 2019,3(9)1900159. doi: 10.1002/smtd.201900159

    62. [62]

      Gan G Q, Li X Y, Wang L, Fan S Y, Li J, Liang F, Chen A C. Identification of Catalytic Active Sites in Nitrogen-Doped Carbon for Electrocatalytic Dechlorination of 1, 2-Dichloroethane[J]. ACS Catal., 2019,9(12):10931-10939. doi: 10.1021/acscatal.9b02853

    63. [63]

      Quílez-Bermejo J, Morallón E, Cazorla-Amorós D. Polyaniline-Derived N-Doped Ordered Mesoporous Carbon Thin Films: Efficient Catalysts Towards Oxygen Reduction Reaction[J]. Polymers, 2020,12(10)2382. doi: 10.3390/polym12102382

    64. [64]

      Yang Y, Liu Y X, Li Y, Deng B W, Yin B, Yang M B. Design of Compressible and Elastic N-Doped Porous Carbon Nanofiber Aerogels as Binder - Free Supercapacitor Electrodes[J]. J. Mater. Chem. A, 2020,8(33):17257-17265. doi: 10.1039/D0TA05423B

    65. [65]

      He C, Hu X J. Anionic Dye Adsorption on Chemically Modified Ordered Mesoporous Carbons[J]. Ind. Eng. Chem. Res., 2011,50(24):14070-14083. doi: 10.1021/ie201469p

    66. [66]

      Oh T, Kim M, Park D, Kim J. Synergistic Interaction and Controllable Active Sites of Nitrogen and Sulfur Co-Doping into Mesoporous Carbon Sphere for High Performance Oxygen Reduction Electrocatalysts[J]. Appl. Surf. Sci., 2018,440:627-636. doi: 10.1016/j.apsusc.2018.01.186

    67. [67]

      Yeom D Y, Jeon W, Tu N D K, Yeo S Y, Lee S S, Sung B J, Chang H, Lim J A, Kim H. High-Concentration Boron Doping of Graphene Nanoplatelets by Simple Thermal Annealing and Their Supercapacitive Properties[J]. Sci. Rep., 2015,5(1):1-10.  

    68. [68]

      Sawant S V, Patwardhan A W, Joshi J B, Dasgupta K. Boron Doped Carbon Nanotubes: Synthesis, Characterization and Emerging Applications-A Review[J]. Chem. Eng. J., 2021131616.

    69. [69]

      Kaner R, Kouvetakis J, Warble C, Sattler M, Bartlett N. Boron-Carbon - Nitrogen Materials of Graphite - like Structure[J]. Mater. Res. Bull., 1987,22(3):399-404. doi: 10.1016/0025-5408(87)90058-4

    70. [70]

      Stephan O, Ajayan P, Colliex C, Redlich P, Lambert J, Bernier P, Lefin P. Doping Graphitic and Carbon Nanotube Structures with Boron and Nitrogen[J]. Science, 1994,266(5191):1683-1685. doi: 10.1126/science.266.5191.1683

    71. [71]

      Zhang Y, Dai W W, Liu Y J, Ma B G. Synthesis and Characterization of Boron-Doped Ordered Mesoporous Carbon by Evaporation Induced Self-Assembly under HCl Conditions[J]. RSC Adv., 2017,7(14):8250-8257. doi: 10.1039/C6RA26841B

    72. [72]

      Yi J N, Qing Y, Wu C T, Zeng Y X, Wu Y Q, Lu X H, Tong Y X. Lignocellulose - Derived Porous Phosphorus - Doped Carbon as Advanced Electrode for Supercapacitors[J]. J. Power Sources, 2017,351:130-137. doi: 10.1016/j.jpowsour.2017.03.036

    73. [73]

      Patel M A, Luo F, Khoshi M R, Rabie E, Zhang Q, Flach C R, Mendelsohn R, Garfunkel E, Szostak M, He H. P - Doped Porous Carbon as Metal Free Catalysts for Selective Aerobic Oxidation with an Unexpected Mechanism[J]. ACS Nano, 2016,10(2):2305-2315. doi: 10.1021/acsnano.5b07054

    74. [74]

      Wu J, Jin C, Yang Z R, Tian J H, Yang R Z. Synthesis of Phosphorus -Doped Carbon Hollow Spheres as Efficient Metal-Free Electrocatalysts for Oxygen Reduction[J]. Carbon, 2015,82:562-571. doi: 10.1016/j.carbon.2014.11.008

    75. [75]

      Bai X W, Zhao E J, Li K, Wang Y, Jiao M G, He F, Sun X X, Sun H, Wu Z J. Theoretical Insights on the Reaction Pathways for Oxygen Reduction Reaction on Phosphorus Doped Graphene[J]. Carbon, 2016,105:214-223. doi: 10.1016/j.carbon.2016.04.033

    76. [76]

      Hao E C, Liu W, Liu S, Zhang Y, Wang H L, Chen S G, Cheng F L, Zhao S P, Yang H Z. Rich Sulfur Doped Porous Carbon Materials Derived from Ginkgo Leaves for Multiple Electrochemical Energy Storage Devices[J]. J. Mater. Chem. A, 2017,5(5):2204-2214. doi: 10.1039/C6TA08169J

    77. [77]

      Bandosz T J, Ren T Z. Porous Carbon Modified with Sulfur in Energy Related Applications[J]. Carbon, 2017,118:561-577. doi: 10.1016/j.carbon.2017.03.095

    78. [78]

      Li W Q, Yang D G, Chen H B, Gao Y, Li H M. Sulfur-Doped Carbon Nanotubes as Catalysts for the Oxygen Reduction Reaction in Alkaline Medium[J]. Electrochim. Acta, 2015,165:191-197. doi: 10.1016/j.electacta.2015.03.022

    79. [79]

      Marton M, Kovalčík D, Vojs M, Zdravecká E, Varga M, Michalíková L, Veselý M, Redhammer R, Písečný P. Electrochemical Corrosion Behavior of Amorphous Carbon Nitride Thin Films[J]. Vacuum, 2012,86(6):696-698. doi: 10.1016/j.vacuum.2011.07.053

    80. [80]

      Bu Y F, Sun T, Cai Y J, Du L Y, Zhuo O, Yang L J, Wu Q, Wang X Z, Hu Z. Compressing Carbon Nanocages by Capillarity for Optimizing Porous Structures toward Ultrahigh - Volumetric - Performance Supercapacitors[J]. Adv. Mater., 2017,291700470. doi: 10.1002/adma.201700470

    81. [81]

      Cao B, Zhang Q, Liu H, Xu B, Zhang S L, Zhou T F, Mao J F, Pang W K, Guo Z P, Li A, Zhou J S, Chen X H, Song H H. Graphitic Carbon Nanocage as a Stable and High Power Anode for Potassium - Ion Batteries[J]. Adv. Energy Mater., 2018,8(25)1801149. doi: 10.1002/aenm.201801149

    82. [82]

      Feng Y H, Chen S H, Shen D Y, Zhou J, Lu B G. Cross - Linked Hollow Graphitic Carbon as Low-Cost and High-Performance Anode for Potassium Ion Batteries[J]. Energy Environ. Mater., 2021,4(3)451457.  

    83. [83]

      Zhang W, Ming J, Zhao W, Dong X, Hedhili M N, Costa P M, Alshareef H N. Graphitic Nanocarbon with Engineered Defects for HighPerformance Potassium - Ion Battery Anodes[J]. Adv. Funct. Mater., 2019,29(35)1903641. doi: 10.1002/adfm.201903641

    84. [84]

      Yang F, Wang X, Zhang D Q, Yang J, Luo D, Xu Z, Wei J, Wang J Q, Xu Z, Peng F. Chirality-Specific Growth of Single-Walled Carbon Nanotubes on Solid Alloy Catalysts[J]. Nature, 2014,510(7506):522-524. doi: 10.1038/nature13434

    85. [85]

      Li H B, Page A J, Hettich C, Aradi B, Köhler C, Frauenheim T, Irle S, Morokuma K. Graphene Nucleation on a Surface-Molten Copper Catalyst: Quantum Chemical Molecular Dynamics Simulations[J]. Chem. Sci., 2014,5(9):3493-3500. doi: 10.1039/C4SC00491D

    86. [86]

      Zhang Z Y, Li Y T, Zhu S, Liu X, Zhao X L, Li M H, Li H Y, Yang F, Li Y. Patterning Catalyst via Inkjet Printing to Grow Single-Walled Carbon Nanotubes[J]. Chin. Chem. Lett., 2019,30(2):505-508. doi: 10.1016/j.cclet.2018.06.008

  • 加载中
    1. [1]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    4. [4]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    9. [9]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    10. [10]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    11. [11]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    15. [15]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    16. [16]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    17. [17]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    18. [18]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

Metrics
  • PDF Downloads(179)
  • Abstract views(4220)
  • HTML views(2044)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return