Citation: Qi ZENG, Yan XU, Hua-Bin CHEN, Xuan XU, Zhi-Guang XU, Hai-Yang LIU. Oxygen Atom Transfer Reaction Mechanism between Manganese(Ⅴ)-Oxo Corrole Complexes and Styrene[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(1): 39-45. doi: 10.11862/CJIC.2022.005 shu

Oxygen Atom Transfer Reaction Mechanism between Manganese(Ⅴ)-Oxo Corrole Complexes and Styrene

Figures(5)

  • The oxygen atom transfer (OAT) reaction pathway of the reaction between styrene and manganese(Ⅴ)-oxo corrole complexes (MnO corrole) was investigated using the density functional theory B3LYP method. The calculation results showed that the oxygen atom attacked the β carbon atom of the olefinic double bond in styrene to form a transition state, and the direct oxygen atom transfer pathway was determined via the intrinsic reaction coordinate method (IRC) and the minimum -energy crossing point (MECP) calculation. The meso -pentafluorophenyl group of MnO corrole can change the electrophilicity of the manganese atom and increase electrostatic repulsion between the substituent and the oxygen atom, leading to the improvement of oxygen transferability of MnO corrole. With the increase of the pentafluorophenyl group number at the MnO corrole, the reaction energy barrier decreases accordingly. Furthermore, the reaction energy barrier of the triplet state is significantly lower than that of the singlet state pathway, indicating that spin exchange is prone to occur and the reaction proceeds via triplet state pathway. In the OAT reaction pathway, the reactants in singlet state reach to MECP position firstly, and then change to the triplet state with spin over easily. After that, the reactants follow the triplet state pathway with a lower transition state to achieve the product.
  • 加载中
    1. [1]

      Baglia R A, Zaragoza J P T, Goldberg D P. Biomimetic Reactivity of Oxygen-Derived Manganese and Iron Porphyrinoid Complexes[J]. Chem. Rev., 2017,117(21):13320-13352. doi: 10.1021/acs.chemrev.7b00180

    2. [2]

      Larson V A, Battistella B, Ray K, Lehnert N, Nam W. Iron and Manganese Oxo Complexes, Oxo Wall and Beyond[J]. Nat. Rev. Chem., 2020,4(8):404-419. doi: 10.1038/s41570-020-0197-9

    3. [3]

      Zhang R, Klaine S, Alcantar C, Bratcher F. Visible Light Generation of High - Valent Metal - Oxo Intermediates and Mechanistic Insights into Catalytic Oxidations[J]. J. Inorg. Biochem., 2020,212:111246-11259. doi: 10.1016/j.jinorgbio.2020.111246

    4. [4]

      Mcevoy J P, Brudvig G W. Water-Splitting Chemistry of Photosystem Ⅱ[J]. Chem. Rev., 2006,106(11):4455-4483. doi: 10.1021/cr0204294

    5. [5]

      Neu H M, Quesne M G, Yang T, Prokop-Prigge K A, Lancaster K M, Donohoe J, Debeer S, de Visser S P, Goldberg D P. Dramatic Influence of an Anionic Donor on the Oxygen-Atom Transfer Reactivity of a Mn-Oxo Complex[J]. Chem. Eur. J., 2014,20(45):14584-14588. doi: 10.1002/chem.201404349

    6. [6]

      Zou H B, Yang H, Liu Z Y, Mahmood M H R, Mei G Q, Liu H Y, Chang C K. Iron (Ⅳ) - Corrole Catalyzed Stereoselective Olefination of Aldehydes with Ethyl Diazoacetate[J]. Organometallics, 2015,34(12):2791-2795. doi: 10.1021/acs.organomet.5b00069

    7. [7]

      Kim S H, Park H, Seo M S, Kubo M, Ogura T, Klajn J, Gryko D T, Valentine J S, Nam W. Reversible O—O Bond Cleavage and Formation Between Mn (Ⅳ) - Peroxo and Mn (Ⅴ) - Oxo Corroles[J]. J. Am. Chem. Soc., 2010,132(40):14030-14032. doi: 10.1021/ja1066465

    8. [8]

      Zaragoza J P, Baglia R A, Siegler M A, Goldberg D P. Strong Inhibition of O-Atom Transfer Reactivity for Mn (Ⅳ) (O)(π-Radical-Cation) (Lewis Acid) versus Mn(Ⅴ)(O) Porphyrinoid Complexes[J]. J. Am. Chem. Soc., 2015,137(20):6531-6540. doi: 10.1021/jacs.5b00875

    9. [9]

      Ka W K, Ngo F L, Ranburger D, Malone J, Zhang R. Visible Light-Induced Formation of Corrole-Manganese(Ⅴ)-Oxo Complexes: Observation of Multiple Oxidation Pathways[J]. J. Inorg. Biochem., 2016,163:39-44. doi: 10.1016/j.jinorgbio.2016.08.004

    10. [10]

      Liu H Y, Mahmood M H, Qiu S X, Chang C K. Recent Developments in Manganese Corrole Chemistry[J]. Coord. Coord. Chem. Rev., 2013,257(7/8):1306-1333.  

    11. [11]

      Wang Q, Zhang Y, Yu L, Yang H, Mahmood M H R, Liu H Y. Solvent Effects on the Catalytic Activity of Manganese (Ⅲ) Corroles[J]. J. Porphyrins Phthalocyanines, 2014,18(4):316-325. doi: 10.1142/S1088424614500059

    12. [12]

      Kumar A, Goldberg I, Botoshansky M, Buchman Y, Gross Z. Oxygen Atom Transfer Reactions from Isolated (Oxo)manganese (Ⅴ) Corroles to Sulfides[J]. J. Am. Chem. Soc., 2010,132(43):15233-15245. doi: 10.1021/ja1050296

    13. [13]

      Xu Y, Xu Z G, Zhang X H, Chen H B, Xu Xuan, Liu H Y. Oxygen Atom Transfer Reaction of Manganese-Oxo Corrole toward Dimethyl Sulfide: A Density Functional Study[J]. Chin. J. Struct. Chem., 2019,38(11):1857-1866.

    14. [14]

      Bose S, Pariyar A, Biswas A N, Das P, Bandyopadhyay P. Electron Deficient Manganese(Ⅲ) Corrole Catalyzed Oxidation of Alkanes and Alkylbenzenes at Room Temperature[J]. Catal. Commun., 2011,12(13):1193-1197. doi: 10.1016/j.catcom.2011.04.026

    15. [15]

      Gross Z, Golubkov G, Simkhovich L. Epoxidation Catalysis by a Manganese Corrole and Isolation of an Oxo - Manganese (Ⅴ) Corrole[J]. Angew. Chem. Int. Ed., 2000,39(22):4045-4047. doi: 10.1002/1521-3773(20001117)39:22<4045::AID-ANIE4045>3.0.CO;2-P

    16. [16]

      Collman J P, Zeng L, Decréau R A. Multiple Active Oxidants in Competitive Epoxidations Catalyzed by Porphyrins and Corroles[J]. Chem. Commun., 2003(24):2974-2975. doi: 10.1039/B310763A

    17. [17]

      Gross Z, Simkhovich L, Galili N. First Catalysis by Corrole Metal Complexes: Epoxidation, Hydroxylation, and Cyclopropanation[J]. Chem. Commun., 1999(7):599-600. doi: 10.1039/a900571d

    18. [18]

      Liu H Y, Yam F, Xie Y T, Li X Y, Chang C K. A Bulky Bis-Pocket Manganese (Ⅴ) - Oxo Corrole Complex: Observation of Oxygen Atom Transfer Between Triply Bonded Mn ≡O and Alkene[J]. J. Am. Chem. Soc., 2009,131(36):12890-12891. doi: 10.1021/ja905153r

    19. [19]

      Zhang R, Harischandra D N, Newcomb M. Laser Flash Photolysis Generation and Kinetic Studies of Corrole-Manganese(Ⅴ)-Oxo Intermediates[J]. Chem. Eur. J., 2005,11(19):5713-5720. doi: 10.1002/chem.200500134

    20. [20]

      Zhang R, Newcomb M. Laser Flash Photolysis Generation of High-Valent Transition Metal-Oxo Species: Insights from Kinetic Studies in Real Time[J]. Acc. Chem. Res., 2008,41(3):468-477. doi: 10.1021/ar700175k

    21. [21]

      Liu H Y, Zhou H, Liu L L, Ying X, Jiang H F, Chang C K. The Effect of Axial Ligand on the Reactivity of Oxo - Manganese (Ⅴ) Corrole[J]. Chem. Lett., 2007,36(2):274-275. doi: 10.1246/cl.2007.274

    22. [22]

      He J, Xu Z G, Xu X, Gong L Z, Mahmood M H R, Liu H Y. Reactivity of (Oxo)manganese (Ⅴ) Corroles in One - Electron Redox State: Insights from Conceptual DFT and Transition Sate Calculations[J]. J. Porphyrins Phthalocyanines, 2013,17(12):1196-1203. doi: 10.1142/S1088424613500971

    23. [23]

      Gong L Z, Xu Z G, Xu X, He J, Wang Q, Liu H Y. Axial Coordination Behavior of Corrole Mn-Ⅲ and (MnO)-O-Ⅴ Complexes with NBased Ligands[J]. Acta Phys. Chim. Sin., 2014,30(2):265-272. doi: 10.3866/PKU.WHXB201312181

    24. [24]

      Lee C, Yang W, Parr R G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density[J]. Phys. Rev. B: Condens. Matter, 1988,37(2):785-789. doi: 10.1103/PhysRevB.37.785

    25. [25]

      Becke A D. Density - Functional Exchange - Energy Approximation with Correct Asymptotic Behavior[J]. Phys. Rev. A: At. Mol. Opt. Phys., 1988,38(6):3098-3100. doi: 10.1103/PhysRevA.38.3098

    26. [26]

      Couty M, Hall M B. Basis Sets for Transition Metals: Optimized Outer p Functions[J]. J. Comput. Chem., 1996,17(11):1359-1370. doi: 10.1002/(SICI)1096-987X(199608)17:11<1359::AID-JCC9>3.0.CO;2-L

    27. [27]

      Zhu C, Liang J X, Wang B J, Zhu J, Cao Z X. Significant Effect of Spin Flip on the Oxygen Atom Transfer Reaction from (Oxo)manganese (Ⅴ) Corroles to Thioanisole: Insights from Density Functional Calculations[J]. Phys. Chem. Chem. Phys., 2012,14(37):12800-12806. doi: 10.1039/c2cp41647f

    28. [28]

      Harvey J N, Aschi M, Schwarz H, Koch W. The Singlet and Triplet States of Phenyl Cation[J]. A Hybrid Approach for Locating Minimum Energy Crossing Points Between Non - Interacting Potential Energy Surfaces. Theor. Chem. Acc., 1998,99:95-99.

    29. [29]

      Lu T. SobMECP Program, http://sobereva.com/286.

    30. [30]

      HE J, XU Z G, ZENG Y X, XU X, YU L, WANG Q, LIU H Y. Effect of Substituents on Mn—O Bond in Oxo-Manganese(Ⅴ) Corrole Complexes[J]. Acta Phys.-Chim. Sin., 2012,7(28):1658-1664.  

    31. [31]

      LI J, XU Y, XU X, XU Z G, LIU H Y. Mechanism of Catalytic Hydrolysis Cleavage of DNA Phosphodiester Analogue HpPNP by Corrole Manganese(Ⅲ) Complex[J]. Chinese J. Inorg. Chem., 2020,36(3):435-442.  

    32. [32]

      Liu H Y, Lai T S, Yeung L L, Chang C K. First Synthesis of Perfluorinated Corrole and Its MnO Complex[J]. Org. Lett., 2003,5(5):617-620. doi: 10.1021/ol027111i

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    5. [5]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    6. [6]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    16. [16]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    17. [17]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(3)
  • Abstract views(860)
  • HTML views(191)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return