Citation: Su-Qin ZHAO, Jin-Zhong GU. Synthesis, Structures and Catalytic Activity in Knoevenagel Condensation Reaction of Two Diphenyl Ether Tetracarboxylic Acid-Co(Ⅱ) Coordination Polymers[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(1): 161-170. doi: 10.11862/CJIC.2022.004 shu

Synthesis, Structures and Catalytic Activity in Knoevenagel Condensation Reaction of Two Diphenyl Ether Tetracarboxylic Acid-Co(Ⅱ) Coordination Polymers

Figures(8)

  • Two cobalt(Ⅱ) coordination polymers, namely [Co2(μ3-deta)(H2biim)3(H2O)2]n (1) and {[Co2((μ6-deta)(phen)2]·H2O}n (2), have been constructed hydrothermally using H4deta (2, 3, 3', 4' - diphenyl ether tetracarboxylic acid), H2biim (2, 2'-biimidazole), phen (1, 10-phenanthroline), and cobalt chloride at 160 ℃. The products were isolated as stable crystalline solids and were characterized by IR spectra, elemental analyses, thermogravimetric analyses, and single-crystal X-ray diffraction analyses. Single-crystal X-ray diffraction analyses revealed that compounds 1 and 2 crystallize in the triclinic and monoclinic systems, space groups P1 and P21/c, respectively. Compound 1 discloses a 1D chain structure, and compound 2 features a 2D network. The catalytic activities in Knoevenagel condensation reaction of the compounds were investigated. Compound 1 exhibited excellent catalytic activity in Knoevenagel condensation reaction at room temperature.
  • 加载中
    1. [1]

      Zheng X D, Lu T B. Constructions of Helical Coordination Compounds[J]. CrystEngComm, 2010,12(2):324-336. doi: 10.1039/B911991D

    2. [2]

      Fan W D, Yuan S, Wang W J, Feng L, Liu X P, Zhang X R, Wang X, Kang Z X, Dai F N, Yuan D Q, Sun D F, Zhou H C. Optimizing Multivariate Metal-Organic Frameworks for Efficient C2H2/CO2 Separation[J]. J. Am. Chem. Soc., 2020,142(19):8728-8737. doi: 10.1021/jacs.0c00805

    3. [3]

      Wang H, Li J. Microporous Metal-Organic Frameworks for Adsorptive Separation of C5 - C6 Alkane Isomers[J]. Acc. Chem. Res., 2019,52(7):1968-1978. doi: 10.1021/acs.accounts.8b00658

    4. [4]

      Xiao J D, Jiang H L. Metal - Organic Frameworks for Photocatalysis and Photothermal Catalysis[J]. Acc. Chem. Res., 2019,52(2):356-366. doi: 10.1021/acs.accounts.8b00521

    5. [5]

      Gu J Z, Wen M, Cai Y, Shi Z F, Arol A S, Kirillova M V, Kirillov A M. Metal-Organic Architectures Assembled from Multifunctional Polycarboxylates: Hydrothermal Self - Assembly, Structures, and Catalytic Activity in Alkane Oxidation[J]. Inorg. Chem., 2019,58(4):2403-2412. doi: 10.1021/acs.inorgchem.8b02926

    6. [6]

      Gu J Z, Wen M, Cai Y, Shi Z F, Nesterov D S, Kirillova M V, Kirillov A M. Cobalt (Ⅱ) Coordination Polymers Assembled from Unexplored Pyridine-Carboxylic Acids: Structural Diversity and Catalytic Oxidation of Alcohols[J]. Inorg. Chem., 2019,58(9):5875-5885. doi: 10.1021/acs.inorgchem.9b00242

    7. [7]

      Roy M, Adhikary A, Mondal A K, Mondal R. Multifunctional Properties a 1D Helical Co (Ⅱ) Coordination Polymers: Toward Single - Ion Magnetic Behavior and Efficient Dye Degradation[J]. ACS Omega, 2018,3(11):15315-15324. doi: 10.1021/acsomega.8b02212

    8. [8]

      Salitros I, Herchel R, Fuhr O, Gonzalez-Prieto R, Ruben M. Polynuclear Iron (Ⅱ) Complexes with 2, 6 - Bis(pyrazol - 1 - yl) - pyridineanthracence Ligands Exhibiting Highly Distorted High-Spin Centers[J]. Inorg. Chem., 2019,58(7):4310-4319. doi: 10.1021/acs.inorgchem.8b03432

    9. [9]

      Lustig W P, Mukherjee S, Rudd N D, Desai A V, Li J, Ghosh S K. Metal-Organic Frameworks: Functional Luminescent and Photonic Materials for Sensing Applications[J]. Chem. Soc. Rev., 2017,46(10):3242-3285.  

    10. [10]

      Cui Y J, Yue Y F, Qian G D, Chen B L. Luminescent Functional Metal-Organic Frameworks[J]. Chem. Rev., 2012,112(2):1126-1162. doi: 10.1021/cr200101d

    11. [11]

      Haddad S, Lázaro I A, Fantham M, Mishra A, Silvestre- Albero J, Osterrieth J W M, Schierle G S K, Kaminski C F, Forgan R S, Fairen - Jimenez D. Design of a Functionalized Metal - Organic Framework System of Enchanced Targeted Delivery to Mitochondria[J]. J. Am. Chem. Soc., 2020,142(14):6661-6674. doi: 10.1021/jacs.0c00188

    12. [12]

      Gu J Z, Wen M, Liang X X, Shi Z F, Kirillova M V, Kirillov A M. Multifunctional Aromatic Carboxylic Acids as Versatile Building Blocks for Hydrothermal Design of Coordination Polymers[J]. Crystals, 2018,883. doi: 10.3390/cryst8020083

    13. [13]

      ZHAO S Q, GU J Z. Synthesis, Structure and Catalytic Properties of Mn (Ⅱ) Coordination Polymer through In Situ Ligand Reaction[J]. Chinese J. Inorg. Chem., 2021,37(4):751-757.  

    14. [14]

      Li Y, Wu J, Gu J Z, Qiu W D, Feng A S. Temperature-Dependent Syntheses of Two Manganese (Ⅱ) Coordination Compounds Based on an Ether-Bridged Tetracarboxylic Acid[J]. Chin. J. Struct. Chem., 2020,39(4):727-736.  

    15. [15]

      Agarwal R A, Gupta A K, De D. Flexible Zn-MOF Exhibiting Selective CO2 Adsorption and Efficient Lewis Acidic Catalytic Activity[J]. Cryst. Grwoth Des., 2019,19(3):2010-2018. doi: 10.1021/acs.cgd.8b01462

    16. [16]

      Gu J Z, Cai Y, Wen M, Shi Z F, Kirillov A M. A New Series of Cd(Ⅱ) Metal - Organic Architectures Driven by Soft Ether - Bridged Tricarboxylate Spacers: Synthesis, Structural and Topological Versatility, and Photocatalytic Properties[J]. Dalton Trans., 2018,47(40):14327-14339. doi: 10.1039/C8DT02467G

    17. [17]

      Gu J Z, Liang X X, Cui Y H, Wu J, Shi Z F, Kirillov A M. Introducing 2 - (2 - Carboxyphenoxy)terephthalic Acid as a New Versatile Building Block for Design of Diverse Coordination Polymers: Synthesis, Structural Features, Luminescence Sensing, and Magnetism[J]. CrystEngComm, 2017,19(18):2570-2588. doi: 10.1039/C7CE00219J

    18. [18]

      Li Y, Chen Y X, Zhao Z Y, Zou X Z, Feng A S. Syntheses, Crystal Structures, Luminescent and Matgnetic Properties of Three Ni (Ⅱ), Zn(Ⅱ) and Cd(Ⅱ) Coordination Polymers Based on an Ether-Bridged Tetracarboxylic Acid[J]. Chin. J. Struct. Chem., 2020,39(4):967-977.  

    19. [19]

      Li G, Xiao J, Zhang W. Efficient and Reusable Amine-Functionalized Polyacrylonitrile Fiber Catalysts for Knoevenagel Condensation in Water[J]. Green Chem., 2012,14:2234-2242. doi: 10.1039/c2gc35483g

    20. [20]

      Elhamifar D, Kazempoor S, Karimi B. Amine - Functionalized Ionic Liquid-Based Mesoporous Organosilica as a Highly Efficient Nanocatalyst for the Knoevenagel Condensation[J]. Catal. Sci. Technol., 2016,6:4318-4326. doi: 10.1039/C5CY01666E

    21. [21]

      Dumbre D K, Mozammel T, Selvakannan P R, Hamid S B A, Choudhary V R, Bharagava S K. Thermally Decomposed Mesoporous Nickel Iron Hydrotalcite: An Active Solid - Base Catalyst for Solvent - Free Knoevenagel Condensation[J]. J. Colloid Interface Sci., 2015,441:52-58. doi: 10.1016/j.jcis.2014.11.018

    22. [22]

      Wach A, Drozdek M, Dudek B, Szneler E, Kuśtrowski P. Control of Amine Functionality Distribution in Polyvinylamine/SBA-15 Hybrid Catalysts for Knoevenagel Condensation[J]. Catal. Commun., 2015,64:52-57. doi: 10.1016/j.catcom.2015.02.002

    23. [23]

      Xue L P, Li Z H, Zhang T, Cui J J, Gao Y, Yao J X. Construction of Two Zn(Ⅱ)/Cd(Ⅱ) Multifunctional Coordination Polymers with Mixed Ligands for Catalytic and Sensing Properties[J]. New J. Chem., 2018,42:14203-14209. doi: 10.1039/C8NJ02055H

    24. [24]

      Zhai Z W, Yang S H, Lv Y R, Du C X, Li L K, Zang S Q. Amino Functionalized Zn/Cd-Metal-Organic Frameworks for Selective CO2 Adsorption and Knoevenagel Condensation Reactions[J]. Dalton Trans., 2019,48(12):4007-4014. doi: 10.1039/C9DT00391F

    25. [25]

      Yao C, Zhou S L, Kang X J, Zhao Y, Yan R, Zhang Y, Wen L L. A Cationic Zinc-Organic Framework with Lewis Acidic and Basic Bifunctional Sites as an Efficient Solvent - Free Catalyst: CO2 Fixation and Knoevenagel Condensation Reaction[J]. Inorg. Chem., 2018,57(17):11157-11164. doi: 10.1021/acs.inorgchem.8b01713

    26. [26]

      Miao Z C, Luan Y, Qi C, Ramella D. The Synthesis of a Bifunctional Copper Metal Organic Framework and Its Application in the Aerobic Oxidation/Knoevenagel Condensation Sequential Reaction[J]. Dalton Trans., 2016,45(35):13917-13924. doi: 10.1039/C6DT01690A

    27. [27]

      Sheldrick G M. SHELXL 97, Program for Refinement of Crystal Structure. University of Göttingen, Germany, 1997.

    28. [28]

      Gu J Z, Gao Z Q, Tang Y. pH and Auxiliary Ligand Influence on the Structural Variations of 5(2'-Carboxylphenyl) Nicotate Coordination Polymers[J]. Cryst. Growth Des., 2012,12(6):3312-3323. doi: 10.1021/cg300442b

    29. [29]

      GU W J, GU J Z. Syntheses, Crystal Structures and Magnetic Properties of 1D and 2D Cobalt(Ⅱ) Coordination Polymers Constructed from Semi-rigid Tricarboxylic Acid[J]. Chinese J. Inorg. Chem., 2017,33(2):227-236.  

    30. [30]

      Laha B, Khullar S, Gogia A, Mandal S K. Effecting Structural Diversity in a Series of Co (Ⅱ) - Organic Frameworks by the Interplay between Rigidity of a Dicarboxylate and Flexibility of Bis(tridentate) Spanning Ligands[J]. Dalton Trans., 2020,49(35):12298-12310. doi: 10.1039/D0DT02153A

    31. [31]

      Chand S, Pal S C, Mondal M, Hota S, Pal A, Sahoo R, Das M C. Three-Dimensional Co(Ⅱ)-Metal-Organic Frameworks with Varying Porosities and Open Metal Sites toward Multipurpose Heterogeneous Catalysis under Mild Conditions[J]. Cryst. Growth Des., 2019,19(9):5343-5353. doi: 10.1021/acs.cgd.9b00823

    32. [32]

      Loukopoulos E, Kostakis G E. Review: Recent Advances of One-Dimensional Coordination Polymers as Catalysts[J]. J. Coord. Chem., 2018,71:371-410. doi: 10.1080/00958972.2018.1439163

    33. [33]

      Fan W, Wang Y, Xiao Z, Zhang L, Gong Y, Dai F, Wang R, Sun D. A Stable Amino-Functionalized Interpenetrated Metal-Organic Framework Exhibiting Gas Selectivity and Pore - Size - Dependent Catalytic Performance[J]. Inorg. Chem., 2017,56(22):13634-13637. doi: 10.1021/acs.inorgchem.7b02148

    34. [34]

      Wang X F, Zhou S B, Du C C, Wang D Z, Jia D. Seven New Zn(Ⅱ)/Cd (Ⅱ) Coordination Polymers with 2 - (Hydroxymethyl)- 1H - benzo[d] imidazole-5-carboxylic Acid: Synthesis, Structures and Properties[J]. J. Solid State Chem., 2017,252(5):72-85.  

    35. [35]

      Chen H, Fan L, Hu T, Zhang X. 6s-3d {Ba3Zn4}-Organic Framework as an Effective Heterogeneous Catalyst for Chemical Fixation of CO2 and Knoevenagel Condensation Reaction[J]. Inorg. Chem., 2021,60(5):3384-3392. doi: 10.1021/acs.inorgchem.0c03736

    36. [36]

      Karmakar A, Rubio G M D M, Guedes da Silva M F C, Hazra S, Pombeiro A J L. Solvent-Dependent Structural Variation of Zinc (Ⅱ) Coordination Polymers and Their Catalytic Activity in the Knoevenagel Condensation Reaction[J]. Cryst. Growth Des., 2015,15(9):4185-4197. doi: 10.1021/acs.cgd.5b00948

    37. [37]

      Lin X M, Li T, Chen L F, Zhang L, Su C Y. Two Ligand-Functionalized Pb (Ⅱ) Metal - Organic Frameworks: Structures and Catalytic Performances[J]. Dalton Trans., 2012,41(34):10422-10429. doi: 10.1039/c2dt30935a

  • 加载中
    1. [1]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    2. [2]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    3. [3]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    4. [4]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    5. [5]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    6. [6]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    7. [7]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    8. [8]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    9. [9]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    10. [10]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    11. [11]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    12. [12]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    13. [13]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    14. [14]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    15. [15]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    16. [16]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    17. [17]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    18. [18]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    19. [19]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    20. [20]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

Metrics
  • PDF Downloads(10)
  • Abstract views(765)
  • HTML views(117)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return