Citation: Lin LI, Jia-Wei WANG, Yu-Jin HUO, Cai-Feng SUN, Han-Yue ZHANG, Cai-Feng ZHANG. Preparation of Polyvinylpyrrolidone-Protected Fluorescent Copper Nanoclusters for Rapid and Accurate Detection of Ethanol[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2113-2124. doi: 10.11862/CJIC.2021.258 shu

Preparation of Polyvinylpyrrolidone-Protected Fluorescent Copper Nanoclusters for Rapid and Accurate Detection of Ethanol

Figures(10)

  • Accurate quantitative detection of ethanol (EtOH) content is essential for environmental monitoring, clinical diagnosis, food testing, and drinking alcohol. A simple and green fluorescence colorimetry method utilizing sonochemical reduction method for the rapid and efficient detection of EtOH in alcoholic beverages has been established. The fluorescent copper nanoclusters (PVP-Cu NCs) were synthesized by using CuCl2 as a copper source, 2-mercaptobenzothiazole (MBT) as a stabilizing agent, polyvinylpyrrolidone (PVP) as a protecting agent and ascorbic acid (AA) as a reducing agent. The resultant PVP-Cu NCs had a spherical shape with an average diameter of 6.0 nm and a strong fluorescent orange emission characteristic peak at 580 nm upon 340 nm excitation. The fluorescence copper nanoclusters possessed the advantages of excellent time, ultraviolet radiation and salt resistance stability. We found that PVP-Cu NCs had a good responsiveness to EtOH, and the fluorescence intensity was inversely proportionate to the EtOH volume fractions between 5% and 45% as a consequence of inducing aggregation of PVP-Cu NCs via changing its double layer and affecting its stability in the studied system. Based on the established calibration, the EtOH content was effectively evaluated with good precision. Furthermore, visible color transformation of this sensor paper was observed in the EtOH content range of 20%-60%, implying utility for visual EtOH detection. It is worth mentioning that the assay was successfully applied for the quantification of EtOH in commercial drink samples and the satisfying results were obtained.
  • 加载中
    1. [1]

      Yeh T M, Yang L, Wang X, Mahajan D, Hsiao B S, Chu B. Polymeric Nanofibrous Composite Membranes for Energy Efficient Ethanol Dehydration[J]. J. Renew. Sustain. Energy, 2012,4(4)041406. doi: 10.1063/1.4739760

    2. [2]

      WANG Q, WANG X Q, ZHU Y C, ZHANG J. Determination of the Content of Ethanol in Herba Epimedium and Astragalus Healthcare Wine[J]. Modern Food, 2019,20(20):155-159.  

    3. [3]

      Tipparat P, Lapanantnoppakhun S, Jakmunee J, Grudpan K. Determination of Ethanol in Liquor by Near-Infrared Spectrophotometry with Flow Injection[J]. Talanta, 2001,53(6):1199-1204. doi: 10.1016/S0039-9140(00)00610-X

    4. [4]

      Stupak M, Kocourek V, Kolouchova I, Hajslova J. Rapid Approach for the Determination of Alcoholic Strength and Overall Quality Check of Various Spirit Drinks and Wines Using GC-MS[J]. Food Control, 2017,80:307-313. doi: 10.1016/j.foodcont.2017.05.008

    5. [5]

      Yarita T, Nakajima R, Otsuka S, Ihara T, Takatsu A, Shibukawa M. Determination of Ethanol in Alcoholic Beverages by High-Performance Liquid Chromatography-Flame Ionization Detection Using Pure Water as Mobile Phase[J]. J. Chromatogr. A, 2002,976(1/2):387-391.  

    6. [6]

      Ün I, Goren A C. Accurate Determination of Ethanol in Water by qNMR: Validation and Uncertainty Assessment[J]. J. Chem. Metrol., 2017,11(1):9-15. doi: 10.25135/jcm.2.17.03.035

    7. [7]

      Bilgi M, Ayranci E. Biosensor Application of Screen-Printed Carbon Electrodes Modified with Manomaterials and a Conducting Polymer: Ethanol Biosensors Based on Alcohol Dehydrogenase[J]. Sens. Actuators B, 2016,237:849-855. doi: 10.1016/j.snb.2016.06.164

    8. [8]

      Ozdokur K V, Demir B, Atman E, Tatli A Y, Yilmaz B, Demirkol D O, Kocak S, Timur S, Ertas F N. A Novel Ethanol Biosensor on Pulsed Deposited MnOx-MoOx Electrode Decorated with Pt Nanoparticles[J]. Sens. Actuators B, 2016,237:291-297. doi: 10.1016/j.snb.2016.06.100

    9. [9]

      Hooda V, Gahlaut A, Hooda V. A Novel Amperometric Biosensor for Rapid Detection of Ethanol Utilizing Gold Nanoparticles and Enzyme Coupled PVC Reaction Cell[J]. Environ. Technol., 2020,1399:1-28.  

    10. [10]

      Byoun Y M, Park S Y, Jin C H, Song Y J, Choi S W. Highly Sensitive and Selective Ethanol Detection at Room Temperature Utilizing Holey SWCNT-Sn/SnO2 Nanocomposites Synthesized by Microwave Irradiation[J]. Sens. Actuators B, 2019,290:467-476. doi: 10.1016/j.snb.2019.04.001

    11. [11]

      Peng H Y, Wang W, Gao F H, Lin S, Ju X J, Xie R, Liu Z, Faraj Y, Chu L Y. Smart Hydrogel Gratings for Sensitive, Facile, and Rapid Detection of Ethanol Concentration[J]. Ind. Eng. Chem. Res., 2019,58:17833-17841. doi: 10.1021/acs.iecr.9b03395

    12. [12]

      HUANG H, LI C G, SHI Z, FENG S H. Microwave-Assisted Hydrothermal Synthesis of Carbon Dots Based on Tyrosine and Their Application in Ion Detection and Bioimaging[J]. Chem. J. Chinese Universities, 2019,40(4):1579-1585.  

    13. [13]

      Ding Y B, Zhu W H, Xie Y S. Development of Ion Chemosensors Based on Porphyrin Analogues[J]. Chem. Rev., 2017,117(4):2203-2256. doi: 10.1021/acs.chemrev.6b00021

    14. [14]

      WANG J J, QI S L, DU J S, YANG Q B, SONG Y, LI Y X. Synthesis of Benzothiazole Fluorescent Probe for Detection of N2H4·H2O and HSO3-[J]. Chem. J. Chinese Universities, 2019,40(7):1397-1404.  

    15. [15]

      XUE Y R, LI H W, WU Y Q. Carbon Dots Based-on Polyethyleneimines as a Ratiometric Fluorescent Sensor of Morin[J]. Chem. J. Chinese Universities, 2020,41(7):1531-1536.  

    16. [16]

      Zhang L B, Wang E K. Metal Nanoclusters: New Fluorescent Probes for Sensors and Bioimaging[J]. Nano Today, 2014,9(1):132-157. doi: 10.1016/j.nantod.2014.02.010

    17. [17]

      Zou H Y, Lan J, Huang C Z. Dopamine Derived Copper Nanocrystals Used as an Efficient Sensing, Catalysis and Antibacterial Agent[J]. RSC Adv., 2015,5:55832-55838. doi: 10.1039/C5RA06240C

    18. [18]

      Aparna R S, Anjali Devi J S, Anjana R R, Nebu J, George S. Zn(Ⅱ) Ion Modulated Red Emitting Copper Nanocluster Probe for the Fluorescence Turn on Sensing of RDX[J]. Sens. Actuators B, 2019,291:298-305. doi: 10.1016/j.snb.2019.04.051

    19. [19]

      Li Y Y, He Y, Ge Y L, Song G W, Zhou J G. Different Fluorescence Emitting Copper Nanoclusters Protected by Egg White and Doubleemission Fluorescent Probe for Fast Detection of Ethanol[J]. Microchim. Acta, 2021,188:101-110.  

    20. [20]

      Li L, Chen J, Li Y, Song N, Zhu L L, Li Z Y. Synthesis of Fluorescent Pink Emitting Copper Nanoparticles and Sensitive Detection of α-Naphthaleneacetic Acid[J]. Spectrochim. Acta Part A, 2020,224117433.  

    21. [21]

      Hu X, Liu T T, Zhuang Y X, Wang W, Li Y Y, Fan W H, Huang Y M. Recent Advances in the Analytical Applications of Copper Nanoclusters[J]. Trac-Trends. Anal. Chem., 2016,77:66-75.  

    22. [22]

      Wen Z Q, Song S L, Wang C X, Qu F D, Thomas T, Hu T T, Wang P, Yang M H. Large-Scale Synthesis of Dual-Emitting-Based Visualization Sensing Paper for Humidity and Ethanol Detection[J]. Sens. Actuators B, 2019,282:9-15.  

    23. [23]

      Wang Y, Chen T X, Zhuang Q F, Ni Y N. Label-Free Photoluminescence Assay for Nitrofurantoin Detection in Lake Water Samples Using Adenosine-Stabilized Copper Nanoclusters as Nanoprobes[J]. Talanta, 2018,179:409-413.

    24. [24]

      Goswami U, Dutta A, Raza A, Kandimalla R, Kalita S, Ghosh S S, Chattopadhyay A. Transferrin-Copper Nanocluster-Doxorubicin Nanoparticles as Targeted Theranostic Cancer Nanodrug[J]. ACS Appl. Mater. Interfaces, 2018,10(4):3282-3294.

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    11. [11]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    12. [12]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    19. [19]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(10)
  • Abstract views(1482)
  • HTML views(400)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return