Citation: Dan-Dan ZHENG, Zhong-Cheng HUANG, Min LIU, Jin-Shui ZHANG, Ting QIU. Preparation and Photocatalytic Performance of g-C3N4-Based Composite Separation Membrane[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2235-2243. doi: 10.11862/CJIC.2021.257 shu

Preparation and Photocatalytic Performance of g-C3N4-Based Composite Separation Membrane

  • Corresponding author: Ting QIU, tingqiu@fzu.edu.cn
  • Received Date: 6 July 2021
    Revised Date: 25 October 2021

Figures(10)

  • Using the amino group on the surface of g-C3N4 nanosheet, chemically cross-linked with the benzyl group chloride of the chloromethylated polyether sulfone (CMPES), which is the membrane substrate, then g-C3N4/CMPES composite membrane was provided by the phase inversion. The effects of the addition of g-C3N4 nanosheets on the structure, morphology, and filtration, photocatalysis, antifouling performance of composite membranes were systematically studied, meanwhile the mechanism of photocatalytic degradation of bovine serum albumin (BSA) solution was also discussed. The results showed that the photocatalytic performance and stability of the composite membrane were effectively improved by chemical bond between the g-C3N4 nanosheets and the membrane substrate material. Due to the photocatalytic effect and the hydrophilicity of g-C3N4 nanosheets, the composite membrane shows excellent filtration performance and anti-pollution performance.
  • 加载中
    1. [1]

      Abbt-Braun G, Lankes U, Frimmel F H. Structural Characterization of Aquatic Humic Substances-The Need for a Multiple Method Approach[J]. Aquat. Sci., 2004,66(2):151-170. doi: 10.1007/s00027-004-0711-z

    2. [2]

      Tijing L D, Woo Y C, Choi J S, Lee S, Kim S H, Shon H K. Fouling and Its Control in Membrane Distillation-A Review[J]. J. Membr. Sci., 2015,475:215-244. doi: 10.1016/j.memsci.2014.09.042

    3. [3]

      Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972,238:37-38. doi: 10.1038/238037a0

    4. [4]

      Qian D L, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M. TiO2/Sulfonated Graphene Oxide/Ag Nanoparticle Membrane: In Situ Separation and Photodegradation of Oil/Water Emulsions[J]. J. Membr. Sci., 2018,554:16-25. doi: 10.1016/j.memsci.2017.12.084

    5. [5]

      Li N, Tian Y, Zhang J, Sun Z, Zhao J, Zuo W. Precisely-Controlled Modification of PVDF Membranes with 3D TiO2/ZnO Nanolayer: Enhanced Anti-fouling Performance by Changing Hydrophilicity and Photocatalysis under Visible Light Irradiation[J]. J. Membr. Sci., 2017,528:359-368. doi: 10.1016/j.memsci.2017.01.048

    6. [6]

      Lee K M, Lai C W, Ngai K S, Juan J C. Recent Developments of Zinc Oxide Based Photocatalyst in Water Treatment Technology: A Review[J]. Water Res., 2016,88:428-448. doi: 10.1016/j.watres.2015.09.045

    7. [7]

      Rajeswari A, Vismaiya S, Pius A. Preparation, Characterization of Nano ZnO-Blended Cellulose Acetate-Polyurethane Membrane for Photocatalytic Degradation of Dyes from Water[J]. Chem. Eng. J., 2017,313:928-937. doi: 10.1016/j.cej.2016.10.124

    8. [8]

      Zinadini S, Rostami S, Vatanpour V, Jalilian E. Preparation of Antibiofouling Polyethersulfone Mixed Matrix NF Membrane Using Photocatalytic Activity of ZnO/MWCNTs Nanocomposite[J]. J. Membr. Sci., 2017,529:133-141. doi: 10.1016/j.memsci.2017.01.047

    9. [9]

      Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light[J]. Nat. Mater., 2009,8:76-82. doi: 10.1038/nmat2317

    10. [10]

      Zheng Y, Lin L H, Wang B, Wang X C. Graphitic Carbon Nitride Polymers toward Sustainable Photoredox Catalysis[J]. Angew. Chem. Int. Ed., 2015,54:12868-12884. doi: 10.1002/anie.201501788

    11. [11]

      WANG Y Q, SHEN S H. Progress and Prospects of Non-Metal Doped Graphitic Carbon Nitride for Improved Photocatalytic Performances[J]. Acta Phys.-Chim. Sin., 2020,36(3):57-70.  

    12. [12]

      Li G S, Xie Z P, Chai S M, Chen X. A Facile One-Step Fabrication of Holey Carbon Nitride Nanosheets for Visible-Light-Driven Hydrogen Evolution[J]. Appl. Catal. B, 2021,283119637. doi: 10.1016/j.apcatb.2020.119637

    13. [13]

      Zhang G G, Lan Z A, Wang X C. Conjugated Polymers: Catalysts for Photocatalytic Hydrogen Evolution[J]. Angew. Chem. Int. Ed., 2016,55:15712-15727. doi: 10.1002/anie.201607375

    14. [14]

      Wei Y B, Zhu Y X, Jiang Y J. Photocatalytic Self-Cleaning Carbon Nitride Nanotube Intercalated Reduced Graphene Oxide Membranes for Enhanced Water Purification[J]. Chem. Eng. J., 2019,356:915-925. doi: 10.1016/j.cej.2018.09.108

    15. [15]

      Wang X T, Wang G L, Chen S, Fan X F, Quan X, Yu H T. Integration of Membrane Filtration and Photoelectrocatalysis on g-C3N4/CNTs/Al2O3 Membrane with Visible-Light Response for Enhanced Water Treatment[J]. J. Membr. Sci., 2017,541:153-161. doi: 10.1016/j.memsci.2017.06.046

    16. [16]

      Zhang M Y, Fu M L, Zhang K S. Graphitic-like Carbon Nitride Improved Thermal Stability and Photocatalytic Antifouling Performance of Polyethersulfone Membranes[J]. Desalin. Water Treat., 2018,103(7):40-48.  

    17. [17]

      Salim N E, Jaafar J, Ismail A F, Othman M H D, Rahman M A, Yusof N, Qtaishat M, Matsuura T, Aziz F, Salleh W N W. Preparation and Characterization of Hydrophilic Surface Modifier Macromolecule Modified Poly(ether sulfone) Photocatalytic Membrane for Phenol Removal[J]. Chem. Eng. J., 2018,335:236-247. doi: 10.1016/j.cej.2017.10.147

    18. [18]

      Salim N E, Nor N A W, Jaafar J, Ismail A F, Qtaishat M R, Matsuura T, Othman M H D, Mukhlis A. Effects of Hydrophilic Surface Macromolecule Modifier Loading on PES/O-g-C3N4 Hybrid Photocatalytic Membrane for Phenol Removal[J]. Appl. Surf. Sci., 2019,465:180-191. doi: 10.1016/j.apsusc.2018.09.161

    19. [19]

      LIU Z Y, CAO R Y, ZHANG M Y. Preparation and Property of Polyethersulfone Ultrafiltration Membranes with Mesoporous-Graphitic-C3N4/Ag[J]. J. Inorg. Mater., 2019,34(5):479-486.  

    20. [20]

      Lu X L, Xu K, Chen P Z, Jia K C, Liu S, Wu C Z. Facile One Step Method Realizing Scalable Production of g-C3N4 Nanosheets and Study of Their Photocatalytic H2 Evolution Activity[J]. J. Mater. Chem. A, 2014,2:18924-18928. doi: 10.1039/C4TA04487H

    21. [21]

      Zheng D D, Huang C J, Wang X C. Post-Annealing Reinforced Hollow Carbon Nitride Nanospheres for Hydrogen Photosynthesis[J]. Nanoscale, 2015,7:465-470. doi: 10.1039/C4NR06011C

    22. [22]

      Wang C, Hou Y C, Cheng J J, Wang X C. Biomimetic Donor-Acceptor Motifs in Carbon Nitrides: Enhancing Red-Light Photocatalytic Selective Oxidation by Rational Surface Engineering[J]. Appl. Catal. B, 2021,294120259. doi: 10.1016/j.apcatb.2021.120259

    23. [23]

      Li J H, Yan B F, Shao X S, Wang S S, Tian H Y, Zhang Q Q. Influence of Ag/TiO2 Nanoparticle on the Surface Hydrophilicity and Visible-Light Response Activity of Polyvinylidene Fluoride Membrane[J]. Appl. Surf. Sci., 2015,324:82-89. doi: 10.1016/j.apsusc.2014.10.080

    24. [24]

      Mamba G, Mishra A K. Graphitic Carbon Nitride (g-C3N4) Nanocomposites: A New and Exciting Generation of Visible Light Driven Photocatalysts for Environmental Pollution Remediation[J]. Appl. Catal. B, 2016,198:347-377. doi: 10.1016/j.apcatb.2016.05.052

    25. [25]

      Zhou K G, Mcmanus D, Prestat E, Zhong X, Shin Y Y, Zhang H L, Haigh S J, Casiraghi C. Self-Catalytic Membrane Photo-Reactor Made of Carbon Nitride Nanosheets[J]. J. Mater. Chem. A, 2016,4(30):11666-11671. doi: 10.1039/C5TA09152G

    26. [26]

      Cao K T, Jiang Z Y, Zhang X S, Zhang Y M, Zhao J, Xing R S, Yang S, Gao C Y, Pan F S. Highly Water-Selective Hybrid Membrane by Incorporating g-C3N4 Nanosheets into Polymer Matrix[J]. J. Membr. Sci., 2015,490:72-83. doi: 10.1016/j.memsci.2015.04.050

    27. [27]

      Xu Z W, Wu T F, Shi J, Teng K Y, Wang W, Ma M J, Li J, Qian X M, Li C Y, Fan J T. Photocatalytic Antifouling PVDF Ultrafiltration Membranes Based on Synergy of Graphene Oxide and TiO2 for Water Treatment[J]. J. Membr. Sci., 2016,520:281-293. doi: 10.1016/j.memsci.2016.07.060

    28. [28]

      Damodar A, You J, Chou H. Study the Self Cleaning, Antibacterial and Photocatalytic Properties of TiO2 Entrapped PVDF Membranes[J]. J. Hazard. Mater., 2009,172(2/3):1321-1328.  

    29. [29]

      Long J L, Wang S B, Ding Z X, Wang S C, Zhou Y E, Huang L, Wang X X. Amine-Functionalizedzirconium Metal-Organic Framework as Efficient Visible-Light Photocatalyst for Aerobic Organictransformations[J]. Chem. Commun., 2012,48(95):11656-11658. doi: 10.1039/c2cc34620f

    30. [30]

      Mousavi M, Habibi-Yangjeh A, Abitorabi M. Fabrication of Novel Magnetically Separable Nanocomposites Using Graphitic Carbon Nitride, Silver Phosphate and Silver Chloride and Their Applications in Photocatalytic Removal of Different Pollutants Using Visible-Light Irradiation[J]. J. Colloid. Interface Sci., 2016,480:218-231. doi: 10.1016/j.jcis.2016.07.021

    31. [31]

      Yuan Q, Chen L, Xiong M, He J, Luo S L, Au C T, Yin S F. Cu2O/BiVO 4 Heterostructures: Synthesis and Application in Simultaneous Photocatalytic Oxidation of Organic Dyes and Reduction of Cr (Ⅵ) under Visible Light[J]. Chem. Eng. J., 2014,255:394-402. doi: 10.1016/j.cej.2014.06.031

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    3. [3]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    4. [4]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    5. [5]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    11. [11]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    12. [12]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    17. [17]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    20. [20]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

Metrics
  • PDF Downloads(9)
  • Abstract views(1092)
  • HTML views(182)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return