Citation: Dan-Dan ZHENG, Zhong-Cheng HUANG, Min LIU, Jin-Shui ZHANG, Ting QIU. Preparation and Photocatalytic Performance of g-C3N4-Based Composite Separation Membrane[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2235-2243. doi: 10.11862/CJIC.2021.257 shu

Preparation and Photocatalytic Performance of g-C3N4-Based Composite Separation Membrane

  • Corresponding author: Ting QIU, tingqiu@fzu.edu.cn
  • Received Date: 6 July 2021
    Revised Date: 25 October 2021

Figures(10)

  • Using the amino group on the surface of g-C3N4 nanosheet, chemically cross-linked with the benzyl group chloride of the chloromethylated polyether sulfone (CMPES), which is the membrane substrate, then g-C3N4/CMPES composite membrane was provided by the phase inversion. The effects of the addition of g-C3N4 nanosheets on the structure, morphology, and filtration, photocatalysis, antifouling performance of composite membranes were systematically studied, meanwhile the mechanism of photocatalytic degradation of bovine serum albumin (BSA) solution was also discussed. The results showed that the photocatalytic performance and stability of the composite membrane were effectively improved by chemical bond between the g-C3N4 nanosheets and the membrane substrate material. Due to the photocatalytic effect and the hydrophilicity of g-C3N4 nanosheets, the composite membrane shows excellent filtration performance and anti-pollution performance.
  • 加载中
    1. [1]

      Abbt-Braun G, Lankes U, Frimmel F H. Structural Characterization of Aquatic Humic Substances-The Need for a Multiple Method Approach[J]. Aquat. Sci., 2004,66(2):151-170. doi: 10.1007/s00027-004-0711-z

    2. [2]

      Tijing L D, Woo Y C, Choi J S, Lee S, Kim S H, Shon H K. Fouling and Its Control in Membrane Distillation-A Review[J]. J. Membr. Sci., 2015,475:215-244. doi: 10.1016/j.memsci.2014.09.042

    3. [3]

      Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972,238:37-38. doi: 10.1038/238037a0

    4. [4]

      Qian D L, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M. TiO2/Sulfonated Graphene Oxide/Ag Nanoparticle Membrane: In Situ Separation and Photodegradation of Oil/Water Emulsions[J]. J. Membr. Sci., 2018,554:16-25. doi: 10.1016/j.memsci.2017.12.084

    5. [5]

      Li N, Tian Y, Zhang J, Sun Z, Zhao J, Zuo W. Precisely-Controlled Modification of PVDF Membranes with 3D TiO2/ZnO Nanolayer: Enhanced Anti-fouling Performance by Changing Hydrophilicity and Photocatalysis under Visible Light Irradiation[J]. J. Membr. Sci., 2017,528:359-368. doi: 10.1016/j.memsci.2017.01.048

    6. [6]

      Lee K M, Lai C W, Ngai K S, Juan J C. Recent Developments of Zinc Oxide Based Photocatalyst in Water Treatment Technology: A Review[J]. Water Res., 2016,88:428-448. doi: 10.1016/j.watres.2015.09.045

    7. [7]

      Rajeswari A, Vismaiya S, Pius A. Preparation, Characterization of Nano ZnO-Blended Cellulose Acetate-Polyurethane Membrane for Photocatalytic Degradation of Dyes from Water[J]. Chem. Eng. J., 2017,313:928-937. doi: 10.1016/j.cej.2016.10.124

    8. [8]

      Zinadini S, Rostami S, Vatanpour V, Jalilian E. Preparation of Antibiofouling Polyethersulfone Mixed Matrix NF Membrane Using Photocatalytic Activity of ZnO/MWCNTs Nanocomposite[J]. J. Membr. Sci., 2017,529:133-141. doi: 10.1016/j.memsci.2017.01.047

    9. [9]

      Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light[J]. Nat. Mater., 2009,8:76-82. doi: 10.1038/nmat2317

    10. [10]

      Zheng Y, Lin L H, Wang B, Wang X C. Graphitic Carbon Nitride Polymers toward Sustainable Photoredox Catalysis[J]. Angew. Chem. Int. Ed., 2015,54:12868-12884. doi: 10.1002/anie.201501788

    11. [11]

      WANG Y Q, SHEN S H. Progress and Prospects of Non-Metal Doped Graphitic Carbon Nitride for Improved Photocatalytic Performances[J]. Acta Phys.-Chim. Sin., 2020,36(3):57-70.  

    12. [12]

      Li G S, Xie Z P, Chai S M, Chen X. A Facile One-Step Fabrication of Holey Carbon Nitride Nanosheets for Visible-Light-Driven Hydrogen Evolution[J]. Appl. Catal. B, 2021,283119637. doi: 10.1016/j.apcatb.2020.119637

    13. [13]

      Zhang G G, Lan Z A, Wang X C. Conjugated Polymers: Catalysts for Photocatalytic Hydrogen Evolution[J]. Angew. Chem. Int. Ed., 2016,55:15712-15727. doi: 10.1002/anie.201607375

    14. [14]

      Wei Y B, Zhu Y X, Jiang Y J. Photocatalytic Self-Cleaning Carbon Nitride Nanotube Intercalated Reduced Graphene Oxide Membranes for Enhanced Water Purification[J]. Chem. Eng. J., 2019,356:915-925. doi: 10.1016/j.cej.2018.09.108

    15. [15]

      Wang X T, Wang G L, Chen S, Fan X F, Quan X, Yu H T. Integration of Membrane Filtration and Photoelectrocatalysis on g-C3N4/CNTs/Al2O3 Membrane with Visible-Light Response for Enhanced Water Treatment[J]. J. Membr. Sci., 2017,541:153-161. doi: 10.1016/j.memsci.2017.06.046

    16. [16]

      Zhang M Y, Fu M L, Zhang K S. Graphitic-like Carbon Nitride Improved Thermal Stability and Photocatalytic Antifouling Performance of Polyethersulfone Membranes[J]. Desalin. Water Treat., 2018,103(7):40-48.  

    17. [17]

      Salim N E, Jaafar J, Ismail A F, Othman M H D, Rahman M A, Yusof N, Qtaishat M, Matsuura T, Aziz F, Salleh W N W. Preparation and Characterization of Hydrophilic Surface Modifier Macromolecule Modified Poly(ether sulfone) Photocatalytic Membrane for Phenol Removal[J]. Chem. Eng. J., 2018,335:236-247. doi: 10.1016/j.cej.2017.10.147

    18. [18]

      Salim N E, Nor N A W, Jaafar J, Ismail A F, Qtaishat M R, Matsuura T, Othman M H D, Mukhlis A. Effects of Hydrophilic Surface Macromolecule Modifier Loading on PES/O-g-C3N4 Hybrid Photocatalytic Membrane for Phenol Removal[J]. Appl. Surf. Sci., 2019,465:180-191. doi: 10.1016/j.apsusc.2018.09.161

    19. [19]

      LIU Z Y, CAO R Y, ZHANG M Y. Preparation and Property of Polyethersulfone Ultrafiltration Membranes with Mesoporous-Graphitic-C3N4/Ag[J]. J. Inorg. Mater., 2019,34(5):479-486.  

    20. [20]

      Lu X L, Xu K, Chen P Z, Jia K C, Liu S, Wu C Z. Facile One Step Method Realizing Scalable Production of g-C3N4 Nanosheets and Study of Their Photocatalytic H2 Evolution Activity[J]. J. Mater. Chem. A, 2014,2:18924-18928. doi: 10.1039/C4TA04487H

    21. [21]

      Zheng D D, Huang C J, Wang X C. Post-Annealing Reinforced Hollow Carbon Nitride Nanospheres for Hydrogen Photosynthesis[J]. Nanoscale, 2015,7:465-470. doi: 10.1039/C4NR06011C

    22. [22]

      Wang C, Hou Y C, Cheng J J, Wang X C. Biomimetic Donor-Acceptor Motifs in Carbon Nitrides: Enhancing Red-Light Photocatalytic Selective Oxidation by Rational Surface Engineering[J]. Appl. Catal. B, 2021,294120259. doi: 10.1016/j.apcatb.2021.120259

    23. [23]

      Li J H, Yan B F, Shao X S, Wang S S, Tian H Y, Zhang Q Q. Influence of Ag/TiO2 Nanoparticle on the Surface Hydrophilicity and Visible-Light Response Activity of Polyvinylidene Fluoride Membrane[J]. Appl. Surf. Sci., 2015,324:82-89. doi: 10.1016/j.apsusc.2014.10.080

    24. [24]

      Mamba G, Mishra A K. Graphitic Carbon Nitride (g-C3N4) Nanocomposites: A New and Exciting Generation of Visible Light Driven Photocatalysts for Environmental Pollution Remediation[J]. Appl. Catal. B, 2016,198:347-377. doi: 10.1016/j.apcatb.2016.05.052

    25. [25]

      Zhou K G, Mcmanus D, Prestat E, Zhong X, Shin Y Y, Zhang H L, Haigh S J, Casiraghi C. Self-Catalytic Membrane Photo-Reactor Made of Carbon Nitride Nanosheets[J]. J. Mater. Chem. A, 2016,4(30):11666-11671. doi: 10.1039/C5TA09152G

    26. [26]

      Cao K T, Jiang Z Y, Zhang X S, Zhang Y M, Zhao J, Xing R S, Yang S, Gao C Y, Pan F S. Highly Water-Selective Hybrid Membrane by Incorporating g-C3N4 Nanosheets into Polymer Matrix[J]. J. Membr. Sci., 2015,490:72-83. doi: 10.1016/j.memsci.2015.04.050

    27. [27]

      Xu Z W, Wu T F, Shi J, Teng K Y, Wang W, Ma M J, Li J, Qian X M, Li C Y, Fan J T. Photocatalytic Antifouling PVDF Ultrafiltration Membranes Based on Synergy of Graphene Oxide and TiO2 for Water Treatment[J]. J. Membr. Sci., 2016,520:281-293. doi: 10.1016/j.memsci.2016.07.060

    28. [28]

      Damodar A, You J, Chou H. Study the Self Cleaning, Antibacterial and Photocatalytic Properties of TiO2 Entrapped PVDF Membranes[J]. J. Hazard. Mater., 2009,172(2/3):1321-1328.  

    29. [29]

      Long J L, Wang S B, Ding Z X, Wang S C, Zhou Y E, Huang L, Wang X X. Amine-Functionalizedzirconium Metal-Organic Framework as Efficient Visible-Light Photocatalyst for Aerobic Organictransformations[J]. Chem. Commun., 2012,48(95):11656-11658. doi: 10.1039/c2cc34620f

    30. [30]

      Mousavi M, Habibi-Yangjeh A, Abitorabi M. Fabrication of Novel Magnetically Separable Nanocomposites Using Graphitic Carbon Nitride, Silver Phosphate and Silver Chloride and Their Applications in Photocatalytic Removal of Different Pollutants Using Visible-Light Irradiation[J]. J. Colloid. Interface Sci., 2016,480:218-231. doi: 10.1016/j.jcis.2016.07.021

    31. [31]

      Yuan Q, Chen L, Xiong M, He J, Luo S L, Au C T, Yin S F. Cu2O/BiVO 4 Heterostructures: Synthesis and Application in Simultaneous Photocatalytic Oxidation of Organic Dyes and Reduction of Cr (Ⅵ) under Visible Light[J]. Chem. Eng. J., 2014,255:394-402. doi: 10.1016/j.cej.2014.06.031

  • 加载中
    1. [1]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    2. [2]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    4. [4]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    7. [7]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    8. [8]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    9. [9]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    10. [10]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    11. [11]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    12. [12]

      Tianjun NiHui ZhangLiping ZhouRoujie MaYanyu WangZhijun YangDan LuoNithima KhaorapapongXingtao XuYusuke YamauchiDong Liu . Atomic cobalt catalysts on 3D interconnected g-C3N4 support for activation of peroxymonosulfate: The importance of Co-N coordination effect. Chinese Chemical Letters, 2025, 36(9): 110659-. doi: 10.1016/j.cclet.2024.110659

    13. [13]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    14. [14]

      Zheng LiuYuqing BianGraham DawsonJiawei ZhuKai Dai . Rational constructing of Zn0.5Cd0.5S-diethylenetriamine/g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(9): 111272-. doi: 10.1016/j.cclet.2025.111272

    15. [15]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    16. [16]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    17. [17]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    18. [18]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    19. [19]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    20. [20]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(9)
  • Abstract views(2681)
  • HTML views(373)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return