Citation: Chen ZHANG, Jing-Rui ZHANG, Chao HAN, Yu-Hang ZHANG, Shan-Hou YANG, Wei MENG. Synthesis of Porous CuO Based on an Etching Strategy and Application in Electrochemical Glucose Sensing[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2249-2259. doi: 10.11862/CJIC.2021.256 shu

Synthesis of Porous CuO Based on an Etching Strategy and Application in Electrochemical Glucose Sensing

  • Corresponding author: Wei MENG, 2007mengwei@163.com
  • Received Date: 17 February 2021
    Revised Date: 15 October 2021

Figures(9)

  • Based on an etching strategy of treating a Cu-organic framework with tannic acid, a loose and porous CuO (denoted as E-CuO) was obtained. E-CuO modified glassy carbon electrode (E-CuO/GCE) was applied in the electrochemical sensing of glucose. E-CuO/GCE showed a high sensitivity of 0.273 μA·μL·mol-1·cm-2 in the glucose concentration range of 0.25-2 000 μmol·L-1, as well as good anti-interference performance, repeatability and stability. In the analysis of practical samples, E-CuO/GCE performed well in the experiment of spiked recoveries of honey and fruit sugar, and E-CuO/GCE could be used in glucose detection in glucose injection.
  • 加载中
    1. [1]

      Zhu H, Li L, Zhou W, Shao Z P, Chen X J. Advances in Non-Enzymatic Glucose Sensors Based on Metal Oxides.[J]. J. Mater. Chem. B, 2016,4(46):7333-7349. doi: 10.1039/C6TB02037B

    2. [2]

      Niu X H, Li X, Pan J M, He Y F, Qiu F X, Yana Y S. Recent Advances in Non-Enzymatic Electrochemical Glucose Sensors Based on Non-Precious Transition Metal Materials: Opportunities and Challenges.[J]. RSC Adv., 2016,6(88):84893-84905. doi: 10.1039/C6RA12506A

    3. [3]

      Chen X M, Wu G H, Cai Z X, Oyama M, Chen X. Advances in Enzyme-Free Electrochemical Sensors for Hydrogen Peroxide, Glucose, and Uric Acid[J]. Microchim. Acta, 2014,181(7/8):689-705.  

    4. [4]

      Park S, Boo H, Chung T D. Electrochemical Non-Enzymatic Glucose Sensors[J]. Anal. Chim. Acta, 2006,556(1):46-57. doi: 10.1016/j.aca.2005.05.080

    5. [5]

      JIANG Q Y, ZHOU C H, MENG H B, HAN Y, ZHANG R F. Synthesis and Electrocatalytic Application of Two-Dimensional Metal Organic Framework Materials. Chem[J]. J. Chinese Universities, 2021,42(2):556-574.  

    6. [6]

      Leonardi S G, Marini S, Espro C, Bonavita A, Galvagno S Neri G. In-Situ Grown Flower-like Nanostructured CuO on Screen Printed Carbon Electrodes for Non-Enzymatic Amperometric Sensing of Glucose[J]. Microchim. Acta, 2017,184(7):2375-2385. doi: 10.1007/s00604-017-2232-1

    7. [7]

      Hsu Y W, Hsu T K, Sun C L, Nien Y T, Pu N W, Ger M D. Synthesis of CuO/Graphene Nanocomposites for Nonenzymatic Electrochemical Glucose Biosensor Applications[J]. Electrochim. Acta, 2012,82:152-157. doi: 10.1016/j.electacta.2012.03.094

    8. [8]

      Arul P, John S A. Electrodeposition of CuO from Cu-MOF on Glassy Carbon Electrode: A Non-Enzymatic Sensor for Glucose[J]. J. ElectroanalChem, 2017,799:61-69.  

    9. [9]

      Yaghi O M, Li G M, Li H L. Selective Binding and Removal of Guests in a Microporous Metal-Organic Framework[J]. Nature, 1995,378(6558):703-706. doi: 10.1038/378703a0

    10. [10]

      Qin J H, Huang Y D, Zhao Y, Yang X G, Li F F, Wang C, Ma L F. Highly Dense Packing of Chromophoric Linkers Achievable in a Pyrene-Based Metal-Organic Framework for Photoelectric Response[J]. Inorg. Chem., 2019,58(22):15013-15016. doi: 10.1021/acs.inorgchem.9b02203

    11. [11]

      Qin J H, Huang Y D, Shi M Y, Wang H R, Han M L, Yang X G, Li F F, Ma L F. Aqueous-Phase Detection of Antibotics and Nitroaromatic Explosives by an Alkali-Resistant Zn-MOF Directed by an Ionic Liguid[J]. RSC Adv., 2020,10:1439-1446. doi: 10.1039/C9RA08733H

    12. [12]

      Wu R B, Qian X K, Rui X H, Liu H, Yadian B, Zhou K, Wei J, Yan Q Y, Feng X Q, Long Y, Wang L Y, Huang Y Z. Zeolitic Imidazolate Framework 67-Derived High Symmetric Porous Co3O4 Hollow Dodecahedra with Highly Enhanced Lithium Storage Capability[J]. Small, 2014,10(10):1932-1938. doi: 10.1002/smll.201303520

    13. [13]

      Su P P, Liao S C, Rong F, Wang F Q, Chen J, Li C, Yang Q H. Enhanced Lithium Storage Capacity of Co3O4 Hexagonal Nanorings Derived from Co-Based Metal Organic Frameworks[J]. J. Mater. Chem. A, 2014,2(41):17408-17414. doi: 10.1039/C4TA02874K

    14. [14]

      Yang Q, Feng C Q, Liu J W, Guo Z P. Synthesis of Porous Co3O4/C Nanoparticles as Anode for Li-Ion Battery Application[J]. Appl. Surf. Sci., 2018,443:401-406. doi: 10.1016/j.apsusc.2018.02.230

    15. [15]

      Huang G, Zhang F F, Du X C, Qin Y L, Yin D M, Wang L M. Metal Organic Frameworks Route to in Situ Insertion of Multiwalled Carbon Nanotubes in Co3O4 Polyhedra as Anode Materials for Lithium-Ion Batteries[J]. ACS Nano, 2015,9(2):1592-1599. doi: 10.1021/nn506252u

    16. [16]

      Zhao W, Zheng Y W, Cui L, Jia D D, Wei D, Zheng R K, Barrow C, Yang W R, Liu J Q. MOF Derived Ni-Co-S Nanosheets on Electrochemically Activated Carbon Cloth Via an Etching/Ion Exchange Method for Wearable Hybrid Supercapacitors[J]. Chem. Eng. J., 2019,371:461-469. doi: 10.1016/j.cej.2019.04.070

    17. [17]

      Hong J, Park S, Kim S. Synthesis and Electrochemical Characterization of Nanostructured NiCo-MOF/Graphene Oxide Composites as Capacitor Electrodes[J]. Electrochim. Acta, 2019,311(25):62-71.  

    18. [18]

      Liu X L, Wang J, Zeng J L, Wang X, Zhu T Y. Catalytic Oxidation of Toluene over a Porous Co3O4-Supported Ruthenium Catalyst[J]. RSC Adv., 2015,5(64):52066-52071. doi: 10.1039/C5RA07072D

    19. [19]

      Zhang Y, Huang J W, Ding Y. Porous Co3O4/CuO Hollow Polyhedral Nanocages Derived from Metal-Organic Frameworks with Heterojunctions as Efficient Photocatalytic Water Oxidation Catalysts[J]. Appl. Catal. B, 2016,198:447-456. doi: 10.1016/j.apcatb.2016.05.078

    20. [20]

      Zhuang X L, Han C, Zhang J R, Sang Z H, Meng W. Cu/Cu2O Heterojunctions in Carbon Framework for Highly Sensitive Detection of Glucose[J]. J. Electroanal. Chem., 2021,882115040. doi: 10.1016/j.jelechem.2021.115040

    21. [21]

      Lu H L, Zhang L L, Wang B B, Long Y D, Zhang M, Ma J X, Khan A, Chowdhury S P, Zhou X F, Ni Y H. Cellulose-Supported Magnetic Fe3O4-MOF Composites for Enhanced Dye Removal Application[J]. Cellulose, 2019,26(8):4909-4920. doi: 10.1007/s10570-019-02415-y

    22. [22]

      Guo W X, Sun W W, Wang Y. Multilayer CuO@NiO Hollow Spheres: Microwave-Assisted Metal-Organic-Framework Derivation and Highly Reversible Structure-Matched Stepwise Lithium Storage[J]. ACS Nano, 2015,9(11):11462-11471. doi: 10.1021/acsnano.5b05610

    23. [23]

      Hu M, Ju Y, Liang K, Suma T, Cui J, Caruso F. Void Engineering in Metal-Organic Frameworks via Synergistic Etching and Surface Functionalization[J]. Adv. Funct. Mater., 2016,26(32):5827-5834. doi: 10.1002/adfm.201601193

    24. [24]

      Khan M A N, Klu P K, Wang C H, Zhang W X, Luo R, Zhang M, Qi J W, Sun X Y, Wang L J, Li J S. Metal-Organic Framework-Derived Hollow Co3O4/Carbon as Efficient Catalyst for Peroxymonosulfate Activation[J]. Chem. Eng. J., 2019,363:234-246. doi: 10.1016/j.cej.2019.01.129

    25. [25]

      Wang L T, Li S Q, Zhang X D, Huang Y M. CoSe2 Hollow Microspheres with Superior Oxidase-like Activity for Ultrasensitive Colorimetric Biosensing[J]. Talanta, 2020,216121009. doi: 10.1016/j.talanta.2020.121009

    26. [26]

      Chen Y M, Li X Y, Park K, Lu W, Wang C, Xue W J, Yang F, Zhou J, Suo L M, Lin T Q, Huang H T, Li J, Goodenough J B. Nitrogen-Doped Carbon for Sodium-Ion Battery Anode by Self-Etching and Graphitization of Bimetallic MOF-Based Composite[J]. Chem, 2017,3(1):152-163. doi: 10.1016/j.chempr.2017.05.021

    27. [27]

      QI B B. Modification of Metal Organic Framework Material MIL-101 and Its Adsorption of Radioactive Iodine. Nanjing: Nanjing University of Technology, 2018: 40-51

    28. [28]

      Gao P, Sun X Y, Liu B, Lian H T, Liu X Q, Shen J S. Cu MOF-Based Catalytic Sensing for Formaldehyde[J]. J. Mater. Chem. C, 2018,6(30):8105-8114. doi: 10.1039/C8TC01703D

    29. [29]

      Kim K, Kim S, Lee H N, Park Y M, Bae Y S, Kim H J. Electrochemically Derived CuO Nanorod from Copper-Based Metal-Organic Framework for Non-Enzymatic Detection of Glucose[J]. Appl. Surf. Sci., 2019,479:720-726. doi: 10.1016/j.apsusc.2019.02.130

    30. [30]

      Lu H L, Zhang L L, Ma J X, Alam N, Zhou X F, Ni Y H. Nano-Cellulose/MOF Derived Carbon Doped CuO/Fe3O4 Nanocomposite as High Efficient Catalyst for Organic Pollutant Remedy[J]. Nanomaterials, 2019,9(2)277. doi: 10.3390/nano9020277

    31. [31]

      Dolai S, Dey R, Das S, Hussain S, Bhar R, Pal A K. Cupric Oxide (CuO) Thin Films Prepared by Reactive D.C. Magnetron Sputtering Technique for Photovoltaic Application[J]. J. Alloys Compd., 2017,724:456-464. doi: 10.1016/j.jallcom.2017.07.061

    32. [32]

      Li Z X, Yang B L, Zou K Y, Kong L J, Yue M L, Duan H H. Novel Porous Carbon Nanosheet Derived from a 2D Cu-MOF: Ultrahigh Porosity and Excellent Performances in the Supercapacitor Cell[J]. Carbon, 2019,144:540-548. doi: 10.1016/j.carbon.2018.12.061

    33. [33]

      Sun Y M, Li Y X, Wang N, Xu Q Q, Xu L, Lin M. Copper-Based Metal-Organic Framework for Non-Enzymatic Electrochemical Detection of Glucose[J]. Electroanalysis, 2018,30(3):474-478. doi: 10.1002/elan.201700629

    34. [34]

      Liu J, Li J, He S, Sun L, Yuan X J, Xia D S. Heterogeneous Catalytic Ozonation of Oxalic Acid with an Effective Catalyst Based on Copper Oxide Modified C3N4[J]. Sep. Purif. Technol., 2020,234116120. doi: 10.1016/j.seppur.2019.116120

    35. [35]

      Chakraborty P, Dhar S, Deka N, Debnath K, Mondal S P. Non-Enzymatic Salivary Glucose Detection Using Porous CuO Nanostructures[J]. Sens. Actuators B, 2020,302127134. doi: 10.1016/j.snb.2019.127134

    36. [36]

      Shackery I, Patil U, Pezeshki A, Shinde N M, Kang S, Im S, Jun S C. Copper Hydroxide Nanorods Decorated Porous Graphene Foam Electrodes for Non-Enzymatic Glucose Sensing[J]. Electrochim. Acta, 2017,191:954-961.  

    37. [37]

      Archana V, Xia Y, Fang R Y, kumar G G. Hierarchical CuO/NiO-Carbon Nanocomposite Derived from Metal Organic Framework on Cello Tape for the Flexible and High Performance Nonenzymatic Electrochemical Glucose Sensors[J]. ACS Sustainable Chem. Eng., 2019,7(7):6707-6719. doi: 10.1021/acssuschemeng.8b05980

    38. [38]

      Meng W, Xu S, Dai L, Li Y H, Zhu J, Wang L. An Enhanced Sensitivity towards H2O2 Reduction Based on a Novel Cu Metal-Organic Framework and Acetylene Black Modified Electrode[J]. Electrochim. Acta, 2017,230:324-332. doi: 10.1016/j.electacta.2017.02.017

    39. [39]

      Wang Y L, Zhou M, He Y X, Zhou Z R, Sun Z Z. In Situ Loading CuO Quantum Dots on TiO2 Nanosheets as Cocatalyst for Improved Photocatalytic Water Splitting[J]. J. Alloys Compd., 2020,813152184. doi: 10.1016/j.jallcom.2019.152184

    40. [40]

      Meng W, Wen Y Y, Dai L, He Z X, Wang L. A Novel Electrochemical Sensor for Glucose Detection Based on Ag@ZIF-67 Nanocomposite[J]. Sens. Actuators B, 2018,260:852-860. doi: 10.1016/j.snb.2018.01.109

    41. [41]

      Wen Y Y, Meng W, Li C, Dai L, He Z X, Wang L, Li M, Zhu J. Enhanced Glucose Sensing Based on a Novel Composite Cu-MOF/Acb Modified Electrode[J]. Dalton Trans., 2018,47(11):3872-3879. doi: 10.1039/C8DT00296G

    42. [42]

      Yu C P, Cui J W, Wang Y, Zheng H M, Zhang J F, Shu X, Liu J Q, Zhang Y, Wu Y C. Porous HKUST-1 Derived CuO/Cu2O Shell Wrapped Cu(OH)2 Derived CuO/Cu2O Core Nanowire Arrays for Electrochemical Nonenzymatic Glucose Sensors with Ultrahigh Sensitivity[J]. Appl. Surf. Sci., 2018,439:11-17. doi: 10.1016/j.apsusc.2018.01.067

    43. [43]

      Ester L F, Jorge G R, Juan P E, Ramon G, Francisco Y, Antonio L C, Agustín R G E. Robust Label-Free CuxCoyOz Electrochemical Sensors for Hexose Detection During Fermentation Process Monitoring[J]. Sens. Actuators B, 2020,304127360. doi: 10.1016/j.snb.2019.127360

    44. [44]

      Shi L B, Zhu X, Liu T T, Zhao H L, Lan M B. Encapsulating Cu Nanoparticles into Metal-Organic Frameworks for Nonenzymatic Glucose Sensing[J]. Sens. Actuators B, 2016,227:583-590. doi: 10.1016/j.snb.2015.12.092

    45. [45]

      Zhou X L, Yan Z G, Han X D. In Situ Growth of Copper Nanocrystals from Carbonaceous Microspheres with Electrochemical Glucose Sensing Properties[J]. Mater. Res. Bull., 2014,50:118-127. doi: 10.1016/j.materresbull.2013.10.020

    46. [46]

      Song J, Xu L, Zhou C Y, Xing R Q, Dai Q L, Liu D L, Song H W. Synthesis of Graphene Oxide Based CuO Nanoparticles Composite Electrode for Highly Enhanced Nonenzymatic Glucose Detection[J]. ACS Appl. Mater. Interfaces, 2013,5(24):12928-12934. doi: 10.1021/am403508f

    47. [47]

      Jiang J Y, Zhang P, Liu Y, Luo H X. A Novel Non-Enzymatic Glucose Sensor Based on a Cu-Nanoparticle-Modified Graphene Edge Nanoelectrode[J]. Anal. Methods, 2017,9(14):2205-2210. doi: 10.1039/C7AY00084G

    48. [48]

      Jiang D, Liu Q, Wang K, Qian J, Dong X Y, Yang Z T, Du X J, Qiu B J. Enhanced Non-Enzymatic Glucose Sensing Based on Copper Nanoparticles Decorated Nitrogen-Doped Graphene[J]. Biosens. Bioelectron., 2014,54:273-278. doi: 10.1016/j.bios.2013.11.005

    49. [49]

      Liu M M, Liu R, Chen W. Graphene Wrapped Cu2O Nanocubes: Non-Enzymatic Electrochemical Sensors for the Detection of Glucose and Hydrogen Peroxide with Enhanced Stability[J]. Biosens. Bioelectron., 2013,45:206-212. doi: 10.1016/j.bios.2013.02.010

    50. [50]

      Kang X H, Mai Z B, Zou X Y, Cai P X, Mo J Y. A Sensitive Nonenzymatic Glucose Sensor in Alkaline Media with a Copper Nanocluster/Multiwall Carbon Nanotube-Modified Glassy Carbon Electrode[J]. Anal. Biochem., 2007,363(1):143-150. doi: 10.1016/j.ab.2007.01.003

  • 加载中
    1. [1]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    2. [2]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    3. [3]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    4. [4]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    5. [5]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    6. [6]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    7. [7]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    8. [8]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    9. [9]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    10. [10]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    15. [15]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    16. [16]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    17. [17]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    18. [18]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    19. [19]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    20. [20]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

Metrics
  • PDF Downloads(15)
  • Abstract views(1145)
  • HTML views(217)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return