Citation: Jie YANG, Zhen-Hua LI, Wei FENG, Fu-You LI. Checking of Non-radiative Energy Transfer Process in Nanocrystal Self-Assembly Structure[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2158-2166. doi: 10.11862/CJIC.2021.252 shu

Checking of Non-radiative Energy Transfer Process in Nanocrystal Self-Assembly Structure

Figures(6)

  • Upconversion nanoparticles NaYF4: 20%Yb, 2%Er@NaYF4 (marked as UCNP) and gold nanoparticles (AuNP) were used as donors and acceptors to study non-radiative energy transfer in an assembly structure with a defined position relationship. Using UCNP and AuNP as basic building units, two-dimensional UCNP monolayer with large area and regular arrangement were self-assembled by solvent evaporation method at liquid-air interface. UCNP+AuNP bilayer and UCNP+NaYF4+AuNP trilayer structures were prepared by layer-by-layer assembly. Then the luminescent properties of self-assembled films were characterized by the spectral imager system which was designed by our group. The spectrum of three kinds of films were compared. It was found that the luminescence attenuation of UCNP+AuNP bilayer structure and UCNP+NaYF4+AuNP trilayer structure were similar, compared with UCNP monolayer. That is, there is no obvious non-radiative energy transfer between UCNP and AuNP in our research system. In the research, a well-geometric assembly model was provided, and the luminescence test equipment was set up, and it was verified that there was no non-radiative energy transfer between UCNP and AuNP in our self-assembly models.
  • 加载中
    1. [1]

      Zhong Y T, Ma Z R, Wang F F, Wang X, Yang Y J, Liu Y L, Zhao X, Li J C, Du H T, Zhang M X. In Vivo Molecular Imaging for Immunotherapy Using Ultra-Bright Near-Infrared-Ⅱb Rare-Earth Nanoparticles[J]. Nat. Biotechnol., 2019,37(11):1322-1331. doi: 10.1038/s41587-019-0262-4

    2. [2]

      Ge H, Wang D Y, Pan Y, Guo Y Y, Li H Y, Zhang F, Zhu X Y, Li Y H, Zhang C, Huang L. Sequence-Dependent DNA Functionalization of Upconversion Nanoparticles and Their Programmable Assemblies[J]. Angew. Chem. Int. Ed., 2020,59(21):8133-8137. doi: 10.1002/anie.202000831

    3. [3]

      Wu Y M, Xu J H, Poh E T, Liang L L, Liu H L, Yang J K, Qiu C W, Vallée R A, Liu X G. Upconversion Superburst with Sub-2μs Lifetime[J]. Nat. Nanotechnol., 2019,14(12):1110-1115. doi: 10.1038/s41565-019-0560-5

    4. [4]

      Li H, Tan M L, Wang X, Li F, Zhang Y Q, Zhao L L, Yang C H, Chen G Y. Temporal Multiplexed In Vivo Upconversion Imaging[J]. J. Am. Chem. Soc., 2020,142(4):2023-2030. doi: 10.1021/jacs.9b11641

    5. [5]

      WANG Z M, HU M, XING B G. Application of Near-Infrared Upconversion Nanotransducers in Optogenetic Regulation[J]. Chinese J. Inorg. Chem., 2020,36(6):969-982.  

    6. [6]

      Gu B, Zhang Q C. Recent Advances on Functionalized Upconversion Nanoparticles for Detection of Small Molecules and Ions in Biosystems[J]. Adv. Sci., 2018,5(3)1700609. doi: 10.1002/advs.201700609

    7. [7]

      Ovais M, Mukherjee S, Pramanik A, Das D, Mukherjee A, Raza A, Chen C. Designing Stimuli-Responsive Upconversion Nanoparticles that Exploit the Tumor Microenvironment[J]. Adv. Mater., 2020,32(22)2000055. doi: 10.1002/adma.202000055

    8. [8]

      Fan Y B, Wang Y H, Zhang N, Sun W Z, Gao Y S, Qiu C W, Song Q H, Xiao S M. Resonance-Enhanced Three-Photon Luminesce via Lead Halide Perovskite Metasurfaces for Optical Encoding[J]. Nat. Commun., 2019,10(1):1-8. doi: 10.1038/s41467-018-07882-8

    9. [9]

      Liu X, Lai H H, Peng J J, Cheng D, Zhang X B, Yuan L. Chromophore-Modified Highly Selective Ratiometric Upconversion Nanoprobes for Detection of ONOO——Related Hepatotoxicity In Vivo[J]. Small, 2019,15(43)1902737. doi: 10.1002/smll.201902737

    10. [10]

      Guo H H, Song X R, Lei W, He C, You W W, Lin Q Z, Zhou S Y, Chen X Y, Chen Z. Direct Detection of Circulating Tumor Cells in Whole Blood Using Time-Resolved Luminescent Lanthanide Nanoprobes[J]. Angew. Chem., 2019,131(35):12323-12327. doi: 10.1002/ange.201907605

    11. [11]

      Yan S Q, Zeng X M, Tang Y A, Liu B F, Wang Y, Liu X G. Activating Antitumor Immunity and Antimetastatic Effect through Polydopa-mine-Encapsulated Core-Shell Upconversion Nanoparticles[J]. Adv. Mater., 2019,31(46)1905825. doi: 10.1002/adma.201905825

    12. [12]

      Melle S, Calderón O G, Laurenti M, Mendez-Gonzalez D, Egatz-Gómez A, López-Cabarcos E, Cabrera-Granado E, Díaz E, Rubio-Retama J. Forster Resonance Energy Transfer Distance Dependence from Upconverting Nanoparticles to Quantum Dots[J]. J. Phys. Chem. C, 2018,122(32):18751-18758. doi: 10.1021/acs.jpcc.8b04908

    13. [13]

      Bednarkiewicz A, Nyk M, Samoc M, Strek W. Up-Conversion FRET from Er3+/Yb3+: NaYF4 Nanophosphor to CdSe Quantum Dots[J]. J. Phys. Chem. C, 2010,114(41):17535-17541. doi: 10.1021/jp106120d

    14. [14]

      Zhou J, Li C Y, Li D H, Liu X F, Mu Z, Gao W B, Qiu J R, Deng R R. Single-Molecule Photoreaction Quantitation through Intraparticle-Surface Energy Transfer (i-SET) Spectroscopy[J]. Nat. Commun., 2020,11(1):1-8. doi: 10.1038/s41467-019-13993-7

    15. [15]

      Zheng T, Sun L D, Zhou J C, Feng W, Zhang C, Yan C H. Construction of NaREF4-Based Binary and Bilayer Nanocrystal Assemblies[J]. Chem. Commun., 2013,49(51):5799-5801. doi: 10.1039/c3cc39108f

    16. [16]

      Deng K R, Xu L L, Guo X, Wu X T, Liu Y L, Zhu Z M, Li Q, Zhan Q Q, Li C X, Quan Z W. Binary Nanoparticle Superlattices for Plasmonically Modulating Upconversion Luminescence[J]. Small, 2020,16(38)2002066. doi: 10.1002/smll.202002066

    17. [17]

      Boles M A, Engel M, Talapin D V. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials[J]. Chem. Rev., 2016,116(18):11220-11289. doi: 10.1021/acs.chemrev.6b00196

    18. [18]

      Coropceanu I, Boles M A, Talapin D V. Systematic Mapping of Binary Nanocrystal Superlattices: The Role of Topology in Phase Selection[J]. J. Am. Chem. Soc., 2019,141(14):5728-5740. doi: 10.1021/jacs.8b12539

    19. [19]

      Boles M A, Talapin D V. Binary Assembly of PbS and Au Nanocrystals: Patchy PbS Surface Ligand Coverage Stabilizes the CuAu Superlattice[J]. ACS Nano, 2019,13(5):5375-5384. doi: 10.1021/acsnano.9b00006

    20. [20]

      Liu Y, Siron M, Lu D, Yang J J, Dos Reis R, Cui F, Gao M Y, Lai M L, Lin J, Kong Q. Self-Assembly of Two-Dimensional Perovskite Nanosheet Building Blocks into Ordered Ruddlesden-Popper Perovskite Phase[J]. J. Am. Chem. Soc., 2019,141(33):13028-13032. doi: 10.1021/jacs.9b06889

    21. [21]

      Yang Y, Lee J T, Liyanage T, Sardar R. Flexible Polymer-Assisted Mesoscale Self-Assembly of Colloidal CsPbBr3 Perovskite Nanocrystals into Higher Order Superstructures with Strong Inter-Nanocrystal Electronic Coupling[J]. J. Am. Chem. Soc., 2019,141(4):1526-1536. doi: 10.1021/jacs.8b10083

    22. [22]

      Yang Y C, Wang B W, Shen X D, Yao L Y, Wang L, Chen X, Xie S H, Li T T, Hu J H, Yang D. Scalable Assembly of Crystalline Binary Nanocrystal Superparticles and Their Enhanced Magnetic and Electrochemical Properties[J]. J.Am.Chem.Soc., 2018,140(44):15038-15047. doi: 10.1021/jacs.8b09779

    23. [23]

      HUANG X, JING Q, LU Z D, REN X M. Ligand-Assisted Aggregation Self-Assembly of CH3NH3PbBr3 Nanoplatelets[J]. Chinese J. Inorg. Chem., 2018,34(8):1489-1493.  

    24. [24]

      Zhou H P, Xu C H, Sun W, Yan C H. Clean and Flexible Modification Strategy for Carboxyl/Aldehyde-Functionalized Upconversion Nanoparticles and Their Optical Applications[J]. Adv. Funct. Mater., 2009,19(24):3892-3900. doi: 10.1002/adfm.200901458

    25. [25]

      Dong A G, Chen J, Vora P M, Kikkawa J M, Murray C B. Binary Nanocrystal Superlattice Membranes Self-Assembled at the Liquid-Air Interface[J]. Nature, 2010,466(7305):474-477. doi: 10.1038/nature09188

    26. [26]

      Bednarkiewicz A, Strek W. Laser-Induced Hot Emission in Nd3+/Yb3+: YAG Nanocrystallite Ceramics[J]. J. Phys. D: Appl. Phy., 2002,35(20)2503. doi: 10.1088/0022-3727/35/20/307

    27. [27]

      Lakowicz J R. Principles of Fluorescence Spectroscopy. New York: Springer Science & Business Media, 2013.

  • 加载中
    1. [1]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    12. [12]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    13. [13]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    14. [14]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    15. [15]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    18. [18]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(3)
  • Abstract views(1135)
  • HTML views(191)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return