Citation: Zhuo-Lei LIU, Jing-Wen LI, Meng-Long SUN, Yong-Wei ZHANG, Chang-Wei DANG, Si-Ning YUN. Synthesis and Electrocatalytic Properties of MnWO4/Biomass-Derived Carbon Nanocomposite Catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2219-2226. doi: 10.11862/CJIC.2021.247 shu

Synthesis and Electrocatalytic Properties of MnWO4/Biomass-Derived Carbon Nanocomposite Catalyst

  • Corresponding author: Si-Ning YUN, yunsining@xauat.edu.cn
  • Received Date: 4 July 2021
    Revised Date: 14 September 2021

Figures(6)

  • A bimetal oxide embedded biomass-derived carbon (MnWO4/BC) nanocomposite catalyst was synthesized using a co-precipitation approach, and it was used as a counter electrode (CE) catalyst to assemble a dye-sensitized solar cell (DSSC). The catalytic performance and photovoltaic performance of MnWO4/BC in non-iodine system was explored. To boost the photovoltaic performance of DSSC, a novel copper redox couple (Cu2+/Cu+) and dye (D35, Y123) were adopted for replacing the traditional I-/I3- redox couple and N719 dye, respectively. The resulting novel DSSC with MnWO4/BC nanocomposite CE catalyst had a photovoltage of approximately 0.89 V. Moreover, it exhibited power conversion efficiency (PCE) of 3.57% and 1.59% for D35 and Y123 dyes, respectively, which were 14.4% and 27.0%, respectively, higher than that in the case of Pt. Fifty continuous cyclic voltammetry tests show that MnWO4/BC catalyst has good electrochemical stability. It is observed that the catalytic activity of MnWO4/BC enhanced significantly due to the superior conductivity and the special pore structure of BC, the excellent electrocatalytic ability of MnWO4, and the synergistic effect between MnWO4 and BC.
  • 加载中
    1. [1]

      Ji Y J, Zhang M D, Cui J H, Lin K C, Zheng H G, Zhu J J, Samia A C S. Highly-Ordered TiO2 Nanotube Arrays with Double-Walled and Bamboo-Type Structures in Dye-Sensitized Solar Cells[J]. Nano Energy, 2012,1(6):796-804. doi: 10.1016/j.nanoen.2012.08.006

    2. [2]

      Zhang M D, Zhang Z Y, Bao Z Q, Ju Z M, Wang X Y, Zheng H G, Ma J, Zhou X F. Promising Alkoxy-Wrapped Porphyrins with Novel Push-Pull Moieties for Dye-Sensitized Solar Cells[J]. J. Mater. Chem. A, 2014,2(36):14883-14889. doi: 10.1039/C4TA02335H

    3. [3]

      Zhao D X, Bian L Y, Luo Y X, Zhang M D, Cao H, Chen M D. Three-Dimensional D-π-A Organic Sensitizer with Coplanar Triphenylamine Moiety for Dye-Sensitized Solar Cells[J]. Dyes Pigm., 2017,140:278-285. doi: 10.1016/j.dyepig.2017.01.051

    4. [4]

      Wang M, Grätzel C, Zakeeruddin S M, Grätzel M. Recent Developments in Redox Electrolytes for Dye-Sensitized Solar Cells[J]. Energy Environ. Sci., 2012,5(11):9394-9405. doi: 10.1039/c2ee23081j

    5. [5]

      Freitag M, Teuscher J, Saygili Y, Zhang X, Giordano F, Liska P, Hua J, Zakeeruddin S M, Moser J E, Grätzel M, Hagfeldt A. Dye-Sensitized Solar Cells for Efficient Power Generation under Ambient Lighting[J]. Nat. Photonics, 2017,11(6):372-378. doi: 10.1038/nphoton.2017.60

    6. [6]

      Hattori S, Wada Y, Yanagida S, Fukuzumi S. Blue Copper Model Complexes with Distorted Tetragonal Geometry Acting as Effective Electron-Transfer Mediators in Dye-Sensitized Solar Cells[J]. J. Am. Chem. Soc., 2005,127(26):9648-9654. doi: 10.1021/ja0506814

    7. [7]

      Higashino T, Iiyama H, Nimura S, Kurumisawa Y, Imahori H. Effect of Ligand Structures of Copper Redox Shuttles on Photovoltaic Performance of Dye-Sensitized Solar Cells[J]. Inorg. Chem., 2020,59(1):452-459. doi: 10.1021/acs.inorgchem.9b02740

    8. [8]

      Hagberg D P, Jiang X, Gabrielsson E, Linder M, Marinado T, Brinck T, Hagfeldt A, Sun L. Symmetric and Unsymmetric Donor Functionalization. Comparing Structural and Spectral Benefits of Chromophores for Dye-Sensitized Solar Cells[J]. J. Mater. Chem., 2009,19(39):7232-7238. doi: 10.1039/b911397p

    9. [9]

      Yun S N, Hagfeldt A, Ma T L. Pt-Free Counter Electrode for Dye-Sensitized Solar Cells with High Efficiency[J]. Adv. Mater., 2014,26(36):6210-6237. doi: 10.1002/adma.201402056

    10. [10]

      Jiang H, Ren Y M, Zhang W W, Wu Y Z, Socie E C, Carlsen B I, Moser J E, Tian H, Zakeeruddin S M, Zhu W H, Grätzel M. Phenanthrene-Fused-Quinoxaline as a Key Building Block for Highly Efficient and Stable Sensitizers in Copper-Electrolyte-Based Dye-Sensitized Solar Cells[J]. Angew. Chem. Int. Ed., 2020,59(24):9324-9329. doi: 10.1002/anie.202000892

    11. [11]

      Tang Q W, Duan J L, Duan Y Y, He B L, Yu L M. Recent Advances in Alloy Counter Electrodes for Dye-Sensitized Solar Cells[J]. A Critical Review. Electrochim. Acta, 2015,178:886-899. doi: 10.1016/j.electacta.2015.08.072

    12. [12]

      ZHANG T H, YUN S N, LI J, LIU Y F, ZHOU X, HOU Y Z, FANG W. Alloy Counter Electrodes in Dye-Sensitized Solar Cells[J]. Chin. Sci. Bull., 2016,61(Z1):478-488.  

    13. [13]

      Yun S N, Freitas J N, Nogueira A F, Wang Y, Ahmad S, Wang Z S. Dye-Sensitized Solar Cells Employing Polymers[J]. Prog. Polym. Sci., 2016,59:1-40. doi: 10.1016/j.progpolymsci.2015.10.004

    14. [14]

      Park B W, Pazoki M, Aitola K, Jeong S, Johansson E M, Hagfeldt A, Boschloo G. Understanding Interfacial Charge Transfer between Metallic PEDOT Counter Electrodes and a Cobalt Redox Shuttle in Dye-Sensitized Solar Cells[J]. ACS Appl. Mater. Interfaces, 2014,6(3):2074-2079. doi: 10.1021/am405108d

    15. [15]

      Yun S N, Liu Y F, Zhang T H, Ahmad S. Recent Advances in Alternative Counter Electrode Materials for Co-Mediated Dye-Sensitized Solar Cells[J]. Nanoscale, 2015,7(28):11877-11893. doi: 10.1039/C5NR02433A

    16. [16]

      Yun S N, Hagfeldt A. Counter Electrodes for Dye-Sensitized and Perovskite Solar Cells: Vol. 2. Weinheim: Wiley-VCH, 2018: 231-349

    17. [17]

      Pang B, Lin S, Shi Y T, Wang Y Y, Chen Y J, Ma S, Feng J G, Zhang C K, Yu L Y, Dong L F. Synthesis of CoFe2O4/Graphene Composite as a Novel Counter Electrode for High Performance Dye-Sensitized Solar Cells[J]. Electrochim. Acta, 2019,297:70-76. doi: 10.1016/j.electacta.2018.11.170

    18. [18]

      Li Z X, Qi W K, Li L D, Ma Z Y, Lai W D, Li L, Jin X S, Zhang Y C, Zhang W M. Preparation of Carbon Nanofibers Supported Bi2MoO6 Nanosheets as Counter Electrode Materials on Titanium Mesh Substrate for Dye-Sensitized Solar Cells[J]. Sol. Energy, 2021,214:502-509. doi: 10.1016/j.solener.2020.11.064

    19. [19]

      Li J W, Yun S N, Han F, Si Y M, Arshad A, Zhang Y W, Chidambaram B, Zafar N, Qiao X Y. Biomass-Derived Carbon Boosted Catalytic Properties of Tungsten-Based Nanohybrids for Accelerating the Triiodide Reduction in Dye-Sensitized Solar Cells[J]. J. Colloid Interface Sci., 2020,578:184-194. doi: 10.1016/j.jcis.2020.04.089

    20. [20]

      Han F, Yun S N, Shi J, Zhang Y W, Si Y M, Wang C, Zafar N, Li J W, Qiao X Y. Efficient Dual-Function Catalysts for Triiodide Reduction Reaction and Hydrogen Evolution Reaction Using Unique 3D Network Aloe Waste-Derived Carbon-Supported Molybdenum-Based Bimetallic Oxide Nanohybrids[J]. Appl. Catal. B, 2020,273119004. doi: 10.1016/j.apcatb.2020.119004

    21. [21]

      Zhang Y W, Yun S N, Wang Z Q, Zhang Y L, Wang C, Arshad A, Han F, Si Y M, Fang W. Highly Efficient Bio-Based Porous Carbon Hybridized with Tungsten Carbide as Counter Electrode for Dye-Sensitized Solar Cell[J]. Ceram. Int., 2020,46(10):15812-15821. doi: 10.1016/j.ceramint.2020.03.128

    22. [22]

      Yun S N, Shi J, Si Y M, Sun M L, Zhang Y W, Arshad A, Yang C. Insight into Electrocatalytic Activity and Mechanism of Bimetal Niobium-Based Oxides in Situ Embedded into Biomass-Derived Porous Carbon Skeleton Nanohybrids for Photovoltaics and Alkaline Hydrogen Evolution[J]. J. Colloid Interface Sci., 2021,601:12-29. doi: 10.1016/j.jcis.2021.05.060

    23. [23]

      Zhang Y W, Yun S N, Qiao X Y, Sun M L, Dang J E, Dang C W, Yang J J. Hybridization of Mn/Ta Bimetallic Oxide and Mesh-like Porous Bio-carbon for Boosting Copper Reduction for D35/Y123-Sensitized Solar Cells and Hydrogen Evolution[J]. J. Alloys Compd., 2022,896162349.  

    24. [24]

      Yang L, Wang Y G, Wang Y J, Wang X F, Wang L J, Han G R. Shape-Controlled Synthesis of MnWO4 Nanocrystals via a Simple Hydrothermal Method[J]. J. Alloys Compd., 2013,578:215-219. doi: 10.1016/j.jallcom.2013.05.133

    25. [25]

      Naik K K, Gangan A S, Pathak A, Chakraborty B, Nayak S K, Rout C S. Facile Hydrothermal Synthesis of MnWO4 Non-Enzymatic Glucose Sensing and Supercapacitor Properties with Insights from Density Functional Theory Simulations[J]. ChemistrySelect, 2017,2(20):5707-5715. doi: 10.1002/slct.201700873

    26. [26]

      Balamurugan J, Thanh T D, Kim N H, Lee J H. Nitrogen-Doped Graphene Nanosheets with FeN Core-Shell Nanoparticles as High-Performance Counter Electrode Materials for Dye-Sensitized Solar Cells[J]. Adv. Mater., 2016,3(1)1500348.  

    27. [27]

      Yun S N, Hagfeldt A, Ma T L. Superior Catalytic Activity of Sub-5 mm-Thick Pt/SiC Films as Counter Electrodes for Dye-Sensitized Solar Cells[J]. ChemCatChem, 2014,6(6):1584-1588. doi: 10.1002/cctc.201402003

    28. [28]

      Yun S N, Wang L, Zhao C Y, Wang Y X, Ma T L. A New Type of Low-Cost Counter Electrode Catalyst Based on Platinum Nanoparticles Loaded onto Silicon Carbide (Pt/SiC) for Dye-Sensitized Solar Cells[J]. Phys. Chem. Chem. Phys., 2013,15(12):4286-4290. doi: 10.1039/c3cp44048f

    29. [29]

      Tang Q W, Zhang H H, Meng Y Y, He B L, Yu L M. Dissolution Engineering of Platinum Alloy Counter Electrodes in Dye-Sensitized Solar Cells[J]. Angew. Chem. Int. Ed., 2015,54(39):11448-11452. doi: 10.1002/anie.201505339

    30. [30]

      Li L L, Chang C W, Wu H H, Shiu J W, Wu P T, Diau W G E. Morphological Control of Platinum Nanostructures for Highly Efficient Dye-Sensitized Solar Cells[J]. J. Mater. Chem., 2012,22(13):6267-6273. doi: 10.1039/c2jm16135d

    31. [31]

      Chiu I T, Li C T, Lee C P, Chen P Y, Tseng Y H, Vittal R, Ho K C. Nanoclimbing-Wall-like CoSe2/Carbon Composite Film for the Counter Electrode of a Highly Efficient Dye-Sensitized Solar Cell: A Study on the Morphology Control[J]. Nano Energy, 2016,22:594-606. doi: 10.1016/j.nanoen.2016.02.060

    32. [32]

      Zhang M D, Huang C Y, Song M X, Zhao D X, Cao H, Chen M D. D-D-π-A Organic Dye Containing Rhodanine-3-Acetic Acid Moiety for Dye-Sensitized Solar Cells[J]. Mendeleev Commun., 2016,26(4):288-290. doi: 10.1016/j.mencom.2016.07.006

    33. [33]

      Li Y J, Liu X F, Li H S, Shi D X, Jiao Q Z, Zhao Y, Feng C H, Bai X P, Wang H X, Wu Q. Rational Design of Metal Organic Framework Derived Hierarchical Structural Nitrogen Doped Porous Carbon Coated CoSe/Nitrogen Doped Carbon Nanotubes Composites as a Robust Pt-Free Electrocatalyst for Dye-Sensitized Solar Cells[J]. J. Power Sources, 2019,422:122-130. doi: 10.1016/j.jpowsour.2019.03.041

    34. [34]

      Das S, Sudhagar P, Verma V, Song D, Ito E, Lee S Y, Kang Y S, Choi W. Amplifying Charge-Transfer Characteristics of Graphene for Triiodide Reduction in Dye-Sensitized Solar Cells[J]. Adv. Funct. Mater., 2011,21(19):3729-3736. doi: 10.1002/adfm.201101191

    35. [35]

      Wen Z H, Cui S M, Pu H H, Mao S, Yu K H, Feng X L, Chen J H. Metal Nitride/Graphene Nanohybrids: General Synthesis and Multifunctional Titanium Nitride/Graphene Electrocatalyst[J]. Adv. Mater., 2011,23(45):5445-5450. doi: 10.1002/adma.201102772

    36. [36]

      Mehmood U, Ahmad W, Ahmed S. Nickel Impregnated Multi-Walled Carbon Nanotubes (Ni/MWCNT) as Active Catalyst Materials for Efficient and Platinum-Free Dye-Sensitized Solar Cells (DSSCs)[J]. Sustain. Energ. Fuels, 2019,3(12):3473-3480. doi: 10.1039/C9SE00583H

    37. [37]

      Xu C, Jiang Y, Yang J, Wu W, Qian X, Hou L. Co-Fe-MoSx Hollow Nanoboxes as High-Performance Counter Electrode Catalysts for Pt-Free Dye-Sensitized Solar Cells[J]. Chem. Eng. J., 2018,343:86-94. doi: 10.1016/j.cej.2018.02.121

    38. [38]

      Yun S N, Zhang H, Pu H, Chen J, Hagfeldt A, Ma T L. Metal Oxide/Carbide/Carbon Nanocomposites: In Situ Synthesis, Characterization, Calculation, and Their Application as an Efficient Counter Electrode Catalyst for Dye-Sensitized Solar Cells[J]. Adv. Energy Mater., 2013,3(11):1407-1412. doi: 10.1002/aenm.201300242

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    20. [20]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

Metrics
  • PDF Downloads(3)
  • Abstract views(1482)
  • HTML views(250)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return