Citation: Shu-Tong PANG, Hui ZHAO. Synthesis and Electrochemical Properties of La2-xBixCuO4 Cathode Material[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2185-2192. doi: 10.11862/CJIC.2021.246 shu

Synthesis and Electrochemical Properties of La2-xBixCuO4 Cathode Material

  • Corresponding author: Hui ZHAO, zhaohui98@hlju.edu.cn
  • Received Date: 15 June 2021
    Revised Date: 5 October 2021

Figures(6)

  • The cathode material La2-xBixCuO4 (x=0, 0.05, 0.10) for solid oxide fuel cell was synthesized by glycinenitrate method. The phase of the material was analyzed by X-ray diffraction (XRD) method. The results show that the material crystallizes in peroskite-type single phase oxide. Due to the increase doping amount of bismuth, the space group of the material changes from Fmmm to I4/mmm. The unit cell volume increases with the doping amount of bismuth. La2-xBixCuO4 cathode materials were found to show no chemical reaction with the electrolyte Sm0.2Ce0.8O1.9 (SDC) at 950℃ for 24 h, indicating the good chemical compatibility of La2-xBixCuO4 with SDC material. The bismuth doping significantly increased the electrical conductivity of the material. The highest conductivity reached 90.3 S·cm-1 at 350℃ for La1.9Bi0.1CuO4. The temperature programmed desorption (TPD) measurement proves that bismuth doping promotes the surface oxygen absorption ability of La2-xBixCuO4 material, and La1.9Bi0.1CuO4 shows the largest amount of oxygen vacancies among the Bi-doped materials. The electrochemical properties of La2-xBixCuO4 cathode materials were further studied by AC impedance spectroscopy under different oxygen partial pressures. The polarization resistance of La1.9Bi0.1CuO4 was 0.26 Ω·cm2 at 700℃ in air. The peak power density (PPD) at 700℃ was 308 mW·cm-2 for the SDC electrolyte supported single cell NiO-SDC/SDC/La1.90Bi0.10CuO4. The reaction rate limiting step is identified to be a mixed step involving the gas oxygen diffusion through the porous cathode and the surface adsorption process.
  • 加载中
    1. [1]

      CHEN S S. The Development Status and Prospects of the Solid Oxide Fuel Cell Industry[J]. Journal of Ceramics, 2020,41:627-632.  

    2. [2]

      Li Q, Fan Y, Zhao H, Huo L H. Preparation and Electrochemical Properties of a Sm2-xSrxNiO4 Cathode for an IT-SOFC[J]. J. Power Sources, 2007,167(1):64-68. doi: 10.1016/j.jpowsour.2007.02.018

    3. [3]

      Gao L, Li Q, Sun L P, Zhang X F, Huo L H, Zhao H, Grenier J. A Novel Family of Nb-Doped Bi0.5Sr0.5FeO3-δ Perovskite as Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cells[J]. J. Power Sources, 2017,371:86-95. doi: 10.1016/j.jpowsour.2017.10.036

    4. [4]

      Sharma R K, Djurado E. An Efficient Hierarchical Nanostructured Pr6O11 Electrode for Solid Oxide Fuel Cells[J]. J. Mater. Chem. A, 2018,6(23):10787-101802. doi: 10.1039/C8TA00190A

    5. [5]

      Li S L, Xia T, Li Q, Sun L P, Huo L H, Zhao H. A-Site Ba-Deficiency Layered Perovskite EuBa1-xCo2O6-δ Cathodes for Intermediate Temperature Solid Oxide Fuel Cells: Electrochemical Properties and Oxygen Reduction Reaction Kinetics[J]. Int. J. Hydrogen Energy, 2017,42:33413-24425.  

    6. [6]

      Aguadero A, Alonso J A, Martnez L. In Situ High Temperature Neutron Powder Diffraction Study of Oxygen-Rich La2NiO4+δ in Air: Correlation with the Electrical Behavior[J]. J. Mater. Chem., 2006,33:3402-3408.  

    7. [7]

      Lee D, Lee H N. Controlling Oxygen Mobility in Ruddlesden-Popper Oxides[J]. Materials, 2017,10368. doi: 10.3390/ma10040368

    8. [8]

      Zhang L K, Li S L, Xia T, Sun L P, Huo L H, Zhao H. Co-Deficient PrBaCo2-xO6-δ Perovskites as Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells: Enhanced Electrochemical Performance and Oxygen Reduction Kinetics[J]. Int. J. Hydrogen Energy, 2018,43:3761-3375. doi: 10.1016/j.ijhydene.2018.01.018

    9. [9]

      Zhao F, Wang X, Wang Z. K2NiF4 type La2-xSrxCo0.8Ni0.2O4+δ as the Cathodes for Solid Oxide Fuel Cells[J]. Solid State Ionics, 2008,27:1450-1453.  

    10. [10]

      Kharton V V, Tsipis E V, Yaremcheno A A. Surface-Limitied Oxygen Transport and Electrode Properties of La2Ni0.8Cu0.2O4+δ[J]. Solid State Ionics, 2004,3:327-337.  

    11. [11]

      Jin C, Liu J, Zhang Y. Characterization and Electrochemical Performances of Ba2-xSrFeO4+δ as a Novel Cathode Material for Intermediate Temperature Solid Oxide Fuel Cells[J]. J. Power Sources, 2008,2:482-488.  

    12. [12]

      Aguadero A, Alonso J A, Escudero M J. Evaluation of the La2Ni1-xCuxO4+δ System as SOFC Cathode Material with YSZ and LSGM as Electrolytes[J]. Solid State Ionics, 2008,11:393-400.  

    13. [13]

      Ding X F, Li M N, Zhao X Y, Ding L M, Yan Y F, Wang L X, Wang Z H. A Highly Active and Stable Cathode for Oxygen Reduction in Intermediate Temperature Solid Oxide Fuel Cells[J]. Sustainable Energy Fuels, 2020,4:1168-1179. doi: 10.1039/C9SE01096C

    14. [14]

      Gu X K, Nikolla E. Design of Ruddlesden-Popper Oxides with Optimal Surface Oxygen Exchange Properties for Oxygen Reduction and Evolution[J]. ACS Catal., 2017,7:5912-5920. doi: 10.1021/acscatal.7b01483

    15. [15]

      Laguna-Bercero M A, Monzon H, Larrea A, Orera V M. Improved Stability of Reversible Solid Oxide Cells with a Nickelate-Based Oxygen Electrode[J]. J. Mater. Chem. A, 2016,4:1446-1453. doi: 10.1039/C5TA08531D

    16. [16]

      Lee Y L, Lee D, Wang X R, Lee H N, Morgan D, Shao-Horn Y. Kinetics of Oxygen Surface Exchange on Epitaxial Ruddlesden-Popper Phases and Correlations to First-Principles Descriptors[J]. J. Phys. Chem. Lett., 2016,7:244-249. doi: 10.1021/acs.jpclett.5b02423

    17. [17]

      Guan B, Li W, Zhang H, Liu X. Oxygen Reduction Reaction Kinetics in Sr-Doped La2NiO4+δ Ruddlesden-Popper Phase as Cathode for Solid Oxide Fuel Cells[J]. J. Electrochem. Soc., 2015,162:F707-F712. doi: 10.1149/2.0541507jes

    18. [18]

      Shen L, Salvador P, Mason T O, Fueki K. High Temperature Electrical Properties and Defect Chemistry of La2-xCaxCuO4-y Superconductors-Ⅱ. Defect Structure Modeling[J]. J. Phys. Chem. Solids, 1996,57:1977-1987. doi: 10.1016/S0022-3697(95)00324-X

    19. [19]

      Mazo G N, Savvin S N. The Molecular Dynamics Study of Oxygen Mobility in La2-xSrxCuO4-δ[J]. Solid State Ionics, 2004,175:371-374. doi: 10.1016/j.ssi.2003.12.028

    20. [20]

      Ferkhi M, Ahmed Yahia H. Electrochemical and Morphological Characterizations of La2-xNiOδ (x=0.01, 0.02, 0.03 and 0.05) as New Cathodes Materials for IT-SOFC[J]. Mater. Res. Bull., 2016,83:268-274. doi: 10.1016/j.materresbull.2016.06.009

    21. [21]

      Adnene M, Mohamed H I, Nassira C B, Ahmed H. From n=1 to n=2 of the Ruddlesden-Popper Phases via Ca-Doping and Induced Effects on Electrical and Optical Properties of La2-xCaxCuO4-δ[J]. J. Phys. Chem., 2017,110:76-86.  

    22. [22]

      Hu X Y, Li M, Xie Y, Yang Y, Wu X J, Xia C R. Oxygen Deficient Ruddlesden-Popper-Type Lanthanum Strontium Cuprate Doped with Bismuth as a Cathode for Solid Oxide Fuel Cells[J]. ACS Appl. Mater. Interfaces, 2019,11:21953-21602.  

    23. [23]

      Simer S P, Bonnett J F, Canfield N L, Meinhardt K D, Shelton J P, Sprenkle V L, Stevenson J W. Development of Lanthanum Ferrite SOFC Cathodes[J]. J. Power Sources, 2003,113:1-10. doi: 10.1016/S0378-7753(02)00455-X

    24. [24]

      Wedig A, Merkle R, Maier J. Oxygen Exchange Kinetics of (Bi, Sr) (Co, Fe)O3-δ Thin-Film Microelectrodes[J]. J. Electrochem. Soc., 2014,161:F23-F32. doi: 10.1149/2.017401jes

    25. [25]

      Zhu Z S, Li M, Xia C R, Bouwmeester H J M. Bismuth-Doped La1.75Sr0.25NiO4+δ as a Novel Cathode Material for Solid Oxide Fuel Cells[J]. J. Mater. Chem. A, 2017,514012. doi: 10.1039/C7TA03381H

    26. [26]

      Yao C, Meng J, Liu X, Zhang X, Meng F. Effects of Bi Doping on the Micro-Structure, Electrical and Electrochemical Properties of La2-xBixCu0.5Mn1.5O6(x=0, 0.1 and 0.2) Perovskites as Novel Cathodes for Solid Oxide Fuel Cells[J]. Electrochim. Acta, 2017,229:429-437. doi: 10.1016/j.electacta.2017.01.153

    27. [27]

      Santos-Gomez L D, Porras-Vazquez J M, Hurtado J, Losilla E R, Marrero-Lopez D. Stability and Electrochemical Performance of Nanostructured La2CuO4+δ Cathodes[J]. J. Alloys Compd., 2019,788:565-572. doi: 10.1016/j.jallcom.2019.02.237

    28. [28]

      Qian J, Tao Z, Xiao J, Jiang J S, Liu W. Performance Improvement of Ceria-Based Solid Oxide Fuel Cells with Yttria-Stabilized Zirconia as an Electronic Blocking Layer by Pulsed Laser Deposition[J]. Int. J. Hydrogen Energy, 2013,38:2407-2412. doi: 10.1016/j.ijhydene.2012.11.112

    29. [29]

      Wang S R, Takehisa K, Masayuki D, Takuya H. Electrical and Ionic Conductivity of Gd-Doped Ceria[J]. J. Electrochem Soc., 2000,147:3606-3609. doi: 10.1149/1.1393946

    30. [30]

      Zheng K, Grozkowska-Sobaś A, Swierczek K. Evaluation of Ln2CuO4(Ln: La, Pr, Nd) Oxides as Cathode Materials for IT-SOFCs[J]. Mater. Res. Bull., 2012,47:4089-4095. doi: 10.1016/j.materresbull.2012.08.072

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    8. [8]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    12. [12]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    13. [13]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    16. [16]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

Metrics
  • PDF Downloads(1)
  • Abstract views(902)
  • HTML views(219)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return