Citation: Ping TANG, Yang LUO, Hong-Ying XUE, Jing-He BAI, Xiao-Fei ZHU, De-Feng ZHOU. Effects of BiVO4 Doping on Microstructure and Performance of Nd0.2Ce0.8O1.9 Electrolytes[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2141-2148. doi: 10.11862/CJIC.2021.245 shu

Effects of BiVO4 Doping on Microstructure and Performance of Nd0.2Ce0.8O1.9 Electrolytes

Figures(7)

  • Sol-gel method was applied to prepare BiVO4 (BV) and Nd0.2Ce0.8O1.9 (NDC) powders. The effects of BV doping on microstructure, morphology and electrical properties of NDC electrolyte were studied. The results of experiments revealed that Nd0.2Ce0.8O1.9 electrolyte showed a highly dense microstructure. At 700℃, the total conductivity (σt) of NDC-5BV electrolyte was 3.35×10-2 S·cm-1. The polarization resistance (Rp) was reduced by more than 34% at 700℃. The maximum power density (MPD) of the single cell reached up to 514 mW·cm-2 at 700℃. During the operation time for 70 h, the open circuit voltage (OCV) can be maintained good stability.
  • 加载中
    1. [1]

      Rashid N L R M, Samat A A, Jais A A, Somalu M R, Muchta A, Isahak W N R W. Review on Zirconate-Cerate-Based Electrolytes for Proton-Conducting Solid Oxide Fuel Cell[J]. Ceram. Int., 2019,45(6):6605-6615. doi: 10.1016/j.ceramint.2019.01.045

    2. [2]

      LIU H, YU J, QIAO C, WANG B, LI D X. Research Progress of Electrolyte Materials for Solid Oxide Fuel Cells[J]. Chinese Journal of Power Sources, 2020,44(10):1549-1551. doi: 10.3969/j.issn.1002-087X.2020.10.037

    3. [3]

      Kuang X J, Payne J L, Johnson M R, Evans I R. Remarkably High Oxide Ion Conductivity at Low Temperature in an Ordered Fluorite-Type Superstructure[J]. Angew. Chem. Int. Ed., 2012,51(3):690-694. doi: 10.1002/anie.201106111

    4. [4]

      ZHAO G C, ZHOU D F, YANG M, XIA Y J, MENG J. Effect of MoO3 and SiO 2 Doping on the Structure and Conductivity of Ce0.8Nd0.2O1.9 Solid Electrolyte[J]. Chinese J. Inorg. Chem., 2011,27(5):860-864.  

    5. [5]

      Le S, Zhu S C, Zhu X D, Sun K N. Densification of Sm0.2Ce0.8O1.9 with the Addition of Lithium Oxide as Sintering Aid[J]. J. Power Sources, 2013,222:367-372. doi: 10.1016/j.jpowsour.2012.08.020

    6. [6]

      Zhang C, Sunarso J, Zhu Z H, Wang S B, Liu S M. Enhanced Oxygen Permeability and Electronic Conductivity of Ce0.8Gd0.2O2-δ Membrane via the Addition of Sintering Aids[J]. Solid State Ionics, 2017,310(1):121-128.  

    7. [7]

      Lima C G M, Santos T H, Grilo J P F, Dutra R P S, Nascimento R M, Rajesh S, Fonseca F C, Macedo D A. Synthesis and Properties of CuO-Doped Ce0.9Gd0.1O2-δ Electrolytes for SOFCs[J]. Ceram. Int., 2015,41(3):4161-4168. doi: 10.1016/j.ceramint.2014.12.093

    8. [8]

      Ge L, Li S J, Zheng Y F, Zhou M, Chen H, Guo L C. Effect of Zinc Oxide Doping on the Grain Boundary Conductivity of Ce0.8Ln0.2O1.9 Ceramics (Ln=Y, Sm, Gd)[J]. J. Power Sources, 2011,196(15):6131-6137. doi: 10.1016/j.jpowsour.2011.03.032

    9. [9]

      Accardo G, Frattini D, Ham H C, Han J H, Yoon S P. Improved Microstructure and Sintering Temperature of Bismuth Nano-Doped GDC Powders Synthesized by Direct Sol-Gel Combustion[J]. Ceram. Int., 2018,44(4):3800-3809. doi: 10.1016/j.ceramint.2017.11.165

    10. [10]

      Gil V, Tartaj J, Moure C, Duran P. Rapid Densification by Using Bi2O3 as an Aid for Sintering of Gadolinia-Doped Ceria Ceramics[J]. Ceram. Int., 2007,33(3):471-475. doi: 10.1016/j.ceramint.2005.10.012

    11. [11]

      Gil V, Tartaj J, Moure C, Duran P. Effect of Bi2O3 Addition on the Sintering and Microstructural Development of Gadolinia-Doped Ceria Ceramics[J]. J. Eur. Ceram. Soc., 2007,27(2):801-805.  

    12. [12]

      Han J X, Zhang J D, Li F, Luan J P, Jia B X. Low-Temperature Sintering and Microstructure Evolution of Bi2O3-Doped YSZ[J]. Ceram. Int., 2018,44(1):1026-1033. doi: 10.1016/j.ceramint.2017.10.039

    13. [13]

      Guo H H, Zhou D, Du C, Wang P J, Liu W F, Pang L X, Wang Q P, Su J Z, Singh C, Trukhanov S. Temperature Stable Li2Ti0.75(Mg1/3Nb2/3)0.25O3-Based Microwave Dielectric Ceramics with Low Sintering Temperature and Ultra-Low Dielectric Loss for Dielectric Resonator Antenna Applications[J]. J. Mater. Chem. C, 2020,8(14):4690-4700. doi: 10.1039/D0TC00326C

    14. [14]

      Fisher J G, Le P G, Han H S, Jeong S M. Use of Vanadium Oxide as a Liquid Phase Sintering Aid for Barium Hexaferrite[J]. J. Magn., 2018,23(3):409-415. doi: 10.4283/JMAG.2018.23.3.409

    15. [15]

      Tzou W C, Yang C F, Chen Y C, Cheng P S. Improvements in the Sintering and Microwave Properties of BiNbO4 Microwave Ceramics by V2O5 Addition[J]. J. Eur. Ceram. Soc., 2000,20(7):991-996. doi: 10.1016/S0955-2219(99)00228-9

    16. [16]

      Chen X, Sun X, Zhou J, Zhou D F, Zhu X F, Meng J. Effects of CoO and Bi2O3 Single/Dual Sintering Aids Doping on Structure and Properties of Ce0.8Nd0.2O1.9[J]. Ceram. Int., 2020,46(14):22727-22732. doi: 10.1016/j.ceramint.2020.06.038

    17. [17]

      Wang J Q, Chen X, Xie S K, Chen L, Wang Y, Meng J, Zhou D F. Bismuth Tungstate/Neodymium-Doped Ceria Composite Electrolyte for Intermediate-Temperature Solid Oxide Fuel Cell: Sintering Aid and Composite Effect[J]. J. Power Sources, 2019,428:105-114. doi: 10.1016/j.jpowsour.2019.04.105

    18. [18]

      Chen M M, Zhang H J, Fan L D, Wang C Y, Zhu B. Ceria-Carbonate Composite for Low Temperature Solid Oxide Fuel Cell: Sintering Aid and Composite Effect[J]. Int. J. Hydrogen Energy, 2014,39(23):12309-12316. doi: 10.1016/j.ijhydene.2014.04.004

    19. [19]

      Hoffart L, Heider U, Jörissen L, Huggins R A, Witschel W. Transport Properties of Materials with the Scheelite Structure and Their Modification by Doping[J]. Solid State Ionics, 1995,72(2):195-198. doi: 10.1007/BF02388670

    20. [20]

      Yao D, Dong C W, Bing Q M, Liu Y, Qu F D, Yang M H, Liu B B, Yang B, Zhang H. Oxygen-Defective Ultrathin BiVO4 nanosheets for Enhanced Gas Sensing[J]. ACS Appl. Mater. Interfaces, 2019,11(26):23495-23502. doi: 10.1021/acsami.9b05626

    21. [21]

      Peet J R, Fuller C A, Frick B, Koza M M, Johnson M R, Piovano A, Evans I R. Insight into Design of Improved Oxide Ion Conductors: Dynamics and Conduction Mechanisms in the Bi0.913V0.087O1.587 Solid Electrolyte[J]. J. Am. Chem. Soc., 2019,141(25):9989-9997. doi: 10.1021/jacs.9b03743

    22. [22]

      Nagao M, Kobayashi K, Hibino T. Low-Temperature Sintering of Yttria-Stabilized Zirconia Using Bismuth-Vanadium Oxide as a Sintering Aid at 800℃[J]. Chem. Lett., 2014,43(12):1887-1889. doi: 10.1246/cl.140712

    23. [23]

      Dong C W, Lu Y S, Yao S Y, Ge R, Wang Z D, Wang Z, An P F, Liu Y, Yang B, Zhang H. Colloidal Synthesis of Ultrathin Monoclinic BiVO4 Nanosheets for Z-Scheme Overall Water Splitting under Visible Light[J]. ACS Catal., 2018,8(9):8649-8658. doi: 10.1021/acscatal.8b01645

    24. [24]

      WANG M, ZHU T, LÜ C M. Bismuth Vanadate Photocatalyst and Its Application. Beijing: Chemical Industry Press, 2016.

    25. [25]

      Dolić S D, Jovanović D J, Smits K, Babić B, Marinović-Cincović M, Porobić S, Dramićanin M D. Improved Coloristic Properties and High NIR Reflectance of Environment-Friendly Yellow Pigments Based on Bismuth Vanadate[J]. Ceram. Int., 2018,44(15):17953-17961. doi: 10.1016/j.ceramint.2018.06.272

    26. [26]

      Zhang T S, Ma J, Chan S H, Kilner J A. Improvements in Sintering Behavior and Grain-Boundary Conductivity of Ceria-Based Electrolytes by a Small Addition of Fe2O3[J]. J. Electrochem. Soc., 2004,151(10):84-90. doi: 10.1149/1.1795257

    27. [27]

      Santos T H, Grilo J, Loureiro F, Fagg D P, Fábio C. Structure, Densification and Electrical Properties of Gd3+ and Cu2+ Co-doped Ceria Solid Electrolytes for SOFC Applications: Effects of Gd2O3 Content[J]. Ceram. Int., 2018,44(3):2745-2751. doi: 10.1016/j.ceramint.2017.11.009

    28. [28]

      Huang W, Shuk P, Greenblatt M. Hydrothermal Synthesis and Properties of Ce1-xSmxO2-x/2 and Ce1-xCaxO2-x Solid Solutions[J]. Chem. Mater., 1997,9(10):2240-2245. doi: 10.1021/cm970425t

    29. [29]

      Guo T, Zhang L, Song X, Dong X L, Shirolkar M M, Wang M, Li M, Wang H Q. Influences of Gd2Ti2O7 Sintering Aid on the Densification, Ionic Conductivity and Thermal Expansion of Gd0.1Ce0.9O1.95 Electrolyte for Solid Oxide Fuel Cells. J[J]. Power Sources, 2014,262:239-244. doi: 10.1016/j.jpowsour.2014.03.077

    30. [30]

      Ding H, Qu D L, Sun H B, Guo X, Li J, Li Q S, Li G C, Wang P, Zhang X Y. Improved Sintering Behavior and Electrical Performance of Ce0.8Sm0.2O2-δ BaZr0.1Ce0.7Y0.2O3-δ (SDC-BZCY) Composite Electrolytes with the Addition of Iron(Ⅲ) Oxide for IT-SOFCs[J]. Ceram. Int., 2019,45(18):24702-24706. doi: 10.1016/j.ceramint.2019.08.209

    31. [31]

      Song X B, Liao D L, Lian Z X, Chen F, Peng K P. Effects of Monovalent Alkali Metals on Grain Boundary Conductivity and Electrochemical Properties of Gadolinia-Doped Ceria Electrolyte[J]. Ceram. Int., 2021,47(13):18773-18782. doi: 10.1016/j.ceramint.2021.03.212

    32. [32]

      Zhu J X, Zhou D F, Guo S R, Ye J F, Hao X F, Cao X Q, Meng J. Grain Boundary Conductivity of High purity Neodymium-Doped Ceria Nano System with and without the Doping of Molybdenum Oxide[J]. J. Power Sources, 2007,174(1):114-123. doi: 10.1016/j.jpowsour.2007.08.093

    33. [33]

      Huang K Q, Tichy R, Goodenough J B. Superior Perovskite Oxide-Ion Conductor; Strontium-and Magnesium-Doped LaGaO3: I, Phase Relationships and Electrical Properties[J]. J. Am. Ceram. Soc., 1998,81(10):2565-2575.  

    34. [34]

      Strickler D W, Carlson W G. Electrical Conductivity in the ZrO2-Rich Region of Several M2O3-ZrO2 Systems[J]. Geochim. Cosmochim. Acta, 1952,48(6):155-169.  

    35. [35]

      Steele B C H. Appraisal of Ce1-yGdyO2-y/2 Electrolytes for IT-SOFC Operation at 500℃[J]. Solid State Ionics, 2000,129(1/2/3/4):95-110.  

    36. [36]

      Leah R T, Brandon N P, Aguiar P. Modelling of Cells, Stacks and systems Based around Metal-Supported Planar IT-SOFC Cells with CGO Electrolytes Operating at 500-600℃[J]. J. Power Sources, 2005,145(2):336-352. doi: 10.1016/j.jpowsour.2004.12.067

    37. [37]

      Wang H T, Hu T H, Xi G C. A novel Gd3+ and Yb3+ Co-doped Ceria-Sulphate Composite Electrolyte for Intermediate-Temperature Fuel Cells[J]. Ceram. Int., 2020,46(7):8695-8699. doi: 10.1016/j.ceramint.2019.12.104

  • 加载中
    1. [1]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    20. [20]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

Metrics
  • PDF Downloads(6)
  • Abstract views(1507)
  • HTML views(128)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return