Citation: Chun-Yu HE, Xiao-Qing YANG, Yan-Hong ZHANG, Shuang JIANG. Synthesis, Structure and Properties of Three Copper(Ⅱ) Complexes Based on a Bifunctional Ligand 2, 2': 6'2″-Terpyridine-4'-carboxylic Acid[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2267-2278. doi: 10.11862/CJIC.2021.244 shu

Synthesis, Structure and Properties of Three Copper(Ⅱ) Complexes Based on a Bifunctional Ligand 2, 2': 6'2″-Terpyridine-4'-carboxylic Acid

  • Corresponding author: Yan-Hong ZHANG, zhangyh@imnu.edu.cn
  • Received Date: 16 March 2021
    Revised Date: 3 September 2021

Figures(5)

  • Two copper binuclear complexes[Cu(tpyc)(H2btc)]2 (1), [Cu2(tpyc)2(suc)(H2O)2] (2) and one coordination polymer {[Cu3(tpyc)3(OH)2(H2O)2]ClO4}n (3) (H3btc=1, 3, 5-benzenetricarboxylic acid, H2suc=succinic acid, Htpyc=2, 2': 6'2″-terpyridine-4'-carboxylic acid) have been synthesized under solvothermal conditions and characterized by elemental analysis, FT-IR spectroscopy, single-crystal X-ray diffraction, powder X-ray diffraction, thermogravimetric analysis and magnetic analysis. Structural analysis suggests that complexes 1-3 display 3D supramolecular networks by multiple hydrogen-bonding interactions. Magnetic studies show that ferromagnetic coupling exists between Cu(Ⅱ) ions in complex 1, while antiferromagnetic interaction exists between Cu(Ⅱ) ions in complex 2.
  • 加载中
    1. [1]

      Luo F, Yan C S, Dang L L, Krishna R, Zhou W, Wu H, Dong X L, Han Y, Hu T L, O'Keeffe M, Wang L L, Luo M B, Lin R B, Chen B L. UTSA-74:A MOF-74 Isomer with Two Accessible Binding Sites per Metal Center for Highly Selective Gas Separation[J]. J. Am. Chem. Soc., 2016,138(17):5678-5684. doi: 10.1021/jacs.6b02030

    2. [2]

      Gao C Y, Tian H R, Ai J, Li L J, Dang S, Lan Y Q, Sun Z M. A Microporous Cu-MOF with Optimized Open Metal Sites and Pore Spaces for High Gas Storage and Active Chemical Fixation of CO2[J]. Chem. Commun., 2016,52(74):11147-11150. doi: 10.1039/C6CC05845K

    3. [3]

      Liao W M, Shi H T, Shi X H, Yin Y G. Pyrolytic Cavitation, Selective Adsorption and Molecular Recognition of a Porous Eu (Ⅲ) MOF[J]. Dalton Trans., 2014,43(41):15305-15307. doi: 10.1039/C4DT01434K

    4. [4]

      Cui Y J, Yue Y F, Qian G D, Chen B L. Luminescent Functional Metal-Organic Frameworks[J]. Chem. Rev., 2012,112(2):1126-1162. doi: 10.1021/cr200101d

    5. [5]

      Lee J Y, Farha O K, Roberts J, Scheidt K A, Nguyen S B T, Hupp J T. Metal-Organic Framework Materials as Catalysts[J]. Chem. Soc. Rev., 2009,38(5):1450-1459. doi: 10.1039/b807080f

    6. [6]

      Li B, Wen H M, Cui Y J, Zhou W, Qian G D, Chen B L. Emerging Multifunctional Metal-Organic Framework Materials[J]. Adv. Mater., 2016,28(40):8819-8860. doi: 10.1002/adma.201601133

    7. [7]

      Chen X R, Tong R L, Shi Z Q, Yang B, Liu H, Ding S P, Wang X, Lei Q F, Wu J, Fang W J. MOF Nanoparticles with Encapsulated Autophagy Inhibitor in Controlled Drug Delivery System for Antitumor[J]. ACS Appl. Mater. Interfaces, 2018,10(3):2328-2337. doi: 10.1021/acsami.7b16522

    8. [8]

      Zhang J, Liang J X, Wang Y, Zhai L J, Niu X Y, Hu T P. Synthesis and Electrochemical Properties of Temperature-Induced Two Metal-Organic Frameworks-Based Electrodes for Supercapacitor[J]. Cryst. Growth Des., 2020,20(1):460-467. doi: 10.1021/acs.cgd.9b01419

    9. [9]

      Chen J, Sekine Y, Okazawa A, Sato H, Kosaka W, Miyasaka H. Chameleonic Layered Metal-Organic Frameworks with Variable Charge-Ordered States Triggered by Temperature and Guest Molecules[J]. Chem. Sci., 2020,11(14):3610-3618. doi: 10.1039/D0SC00684J

    10. [10]

      ZHU Z X, WANG C J, LIU C, XIAO Y M, LUO D, LIU D N, WANG Y Y. A Zn-MOF Luminescent Sensor for Selective Detection of Styrene[J]. Chinese J. Inorg. Chem., 2020,36(10):1941-1947. doi: 10.11862/CJIC.2020.224 

    11. [11]

      Zhao M Y, Zhu J N, Li P, Li W, Cai T, Cheng F F, Xiong W W. Structural Variation of Transition Metal-Organic Frameworks Using Deep Eutectic Solvents with Different Hydrogen Bond Donors[J]. Dalton Trans., 2019,48(27):10199-10209. doi: 10.1039/C9DT01050E

    12. [12]

      Yao S L, Liu S J, Cao C, Tian X M, Bao M N, Zheng T F. Tempera-ture-and Solvent-Dependent Structures of Three Zinc(Ⅱ) Metal-Organic Frameworks for Nitroaromatic Explosives Detection[J]. J. Solid State Chem., 2019,269:195-202. doi: 10.1016/j.jssc.2018.09.032

    13. [13]

      Ling D P, Li H H, Xi W S, Wang Z, Bednarkiewicz A, Dibaba S T, Shi L Y, Sun L N. Heterodimers Made of Metal-Organic Frameworks and Upconversion Nanoparticles for Bioimaging and pH-Responsive Dual-Drug Delivery[J]. J. Mater. Chem. B, 2020,8(6):1316-1325. doi: 10.1039/C9TB02753J

    14. [14]

      MENG L L, CHENG H T, XUE D X, WANG Q, BAI J F. Synthesis and Selective CO2 Adsorption of a rtl-MOF Based upon 5-(3-Aminopyridin-4-yl)-isophthalic Acid and[J]. Chinese J. Inorg. Chem., 2020,36(6):1098-1104.  

    15. [15]

      Yan W, Zhang C L, Chen S G, Han L J, Zheng H G. Two Lanthanide Metal-Organic Frameworks as Remarkably Selective and Sensitive Bifunctional Luminescence Sensor for Metal Ions and Small Organic Molecules[J]. ACS Appl. Mater. Interfaces, 2017,9(2):1629-1634. doi: 10.1021/acsami.6b14563

    16. [16]

      Ezugwu C I, Kabir N A, Yusubov M, Verpoort F. Metal-Organic Frameworks Containing N-Heterocyclic Carbenes and Their Precursors[J]. Coord. Chem. Rev., 2016,307:188-210. doi: 10.1016/j.ccr.2015.06.012

    17. [17]

      Seco J M, Pérez-Yáñez S, Briones D, García J Á, Cepeda J, Rodríguez-Diéguez A. Combining Polycarboxylate and Bipyridyl-Like Ligands in the Design of Luminescent Zinc and Cadmium Based Metal-Organic Frameworks[J]. Cryst. Growth Des., 2017,17(7):3893-3906. doi: 10.1021/acs.cgd.7b00522

    18. [18]

      He Y P, Tan Y X, Zhang J. Functional Metal-Organic Frameworks Constructed from Triphenylamine-Based Polycarboxylate Ligands[J]. Coord. Chem. Rev., 2020,420213354. doi: 10.1016/j.ccr.2020.213354

    19. [19]

      Wang R Y, Liu L N, Lv L L, Wang X, Chen R, Wu B L. Synthesis, Structural Diversity, and Properties of Cd Metal-Organic Frameworks Based on 2-(5-Bromo-pyridin-3-yl)-1H-imidazole-4, 5-dicarboxylate and N-Heterocyclic Ancillary Ligands[J]. Cryst. Growth Des., 2017,17(7):3616-3624. doi: 10.1021/acs.cgd.6b01768

    20. [20]

      Zhou L, Zhou B L, Cui Z, Qin B W, Zhang X Y, Li W L, Zhang J P. Charge Control of the Formation of Two Neutral/Cationic Metal-Organic Frameworks Based on Neutral/Cationic Triangular Clusters and Isonicotinic Acid: Structure, Gas Adsorption and Magnetism[J]. CrystEngComm, 2018,20(36):5402-5408. doi: 10.1039/C8CE00997J

    21. [21]

      Xiao Y F, Wang T T, Zeng H P. Synthesis, Crystal Structure and Optical Property of Two Zinc Metal Organic Frameworks Constructed from Isonicotinic Acid[J]. J. Mol. Struct., 2014,1074:330-338. doi: 10.1016/j.molstruc.2014.06.018

    22. [22]

      Gao H L, Yi L, Zhao B, Zhao X Q, Cheng P, Liao D Z, Yan S P. Synthesis and Characterization of Metal-Organic Frameworks Based on 4-Hydroxypyridine-2, 6-dicarboxylic Acid and Pyridine-2, 6-dicarboxylic Acid Ligands[J]. Inorg. Chem., 2006,45(15):5980-5988. doi: 10.1021/ic060550j

    23. [23]

      Zhao D, Yue D, Jiang K, Zhang L, Li C X, Qian G D. Isostructural Tb3+/Eu3+ Co-doped Metal-Organic Framework Based on Pyridine-Containing Dicarboxylate Ligands for Ratiometric Luminescence Temperature Sensing[J]. Inorg. Chem., 2019,58(4):2637-2644. doi: 10.1021/acs.inorgchem.8b03225

    24. [24]

      Gao X J, Zheng M X, Qin L, Shen K, Zheng H G. Syntheses, Structures, and Properties of Four Metal-Organic Frameworks Based on a N-Centered Multidentate Pyridine-Carboxylate Bifunctional Ligand[J]. Cryst. Growth Des., 2016,16(8):4711-4719. doi: 10.1021/acs.cgd.6b00780

    25. [25]

      Wen L L, Dang D B, Duan C Y, Li Y Z, Tian Z F, Meng Q J. 1D Helix, 2D Brick-Wall and Herringbone, and 3D Interpenetration d10 Metal-Organic Framework Structures Assembled from Pyridine-2, 6-dicarboxylic Acid N-Oxide[J]. Inorg. Chem., 2006,44(20):7161-7170.

    26. [26]

      Gao X S, Ding M J, Zhang J, Zhao L D, Ren X M. Phase Selectivity and Tunable Photophysical Nature of Rare Earth Metal-Organic Frameworks of EuxY1-x-PTC (H3PTC=2, 4, 6-Pyridine Tricarboxylic Acid; x=0-1)[J]. Dalton Trans., 2020,49(42):14985-14994. doi: 10.1039/D0DT03150J

    27. [27]

      Zhou J M, Shi W, Xu N, Cheng P. A New Family of 4f-3d Heterometallic Metal-Organic Frameworks with 2, 2'-Bipyridine-3, 3'-dicarboxylic Acid: Syntheses, Structures and Magnetic Properties[J]. Cryst. Growth Des., 2013,13(3):1218-1225. doi: 10.1021/cg301668g

    28. [28]

      Liu K, Zhou J Min, Li H M, Xu N, Cheng P. A Series of Cu-Ln Metal-Organic Frameworks Based on 2, 2'-Bipyridine-3, 3'-Dicarboxylic Acid: Syntheses, Structures, and Magnetic Properties[J]. Cryst. Growth Des., 2014,14(12):6409-6420. doi: 10.1021/cg5012617

    29. [29]

      Ye Y, Du J F, Sun L B, Liu Y C, Wang S, Song X W, Liang Z Q. Two Zinc Metal-Organic Framework Isomers Based on Pyrazine Tetracarboxylic Acid and Dipyridinylbenzene for Adsorption and Separation of CO2 and Light Hydrocarbons[J]. Dalton Trans., 2020,49(4):1135-1142. doi: 10.1039/C9DT04305E

    30. [30]

      Ingram C W, Kibakaya G, Bacsa J, Mathis S R, Holder A A, Rambaran V H, Dennis B, Castaneda E, Robbins J S, Zhang Z J. Complex Three-Dimensional Lanthanide Metal-Organic Frameworks with Variable Coordination Spheres Based on Pyrazine-2, 3, 5, 6-Tetracarboxylate[J]. CrystEngComm, 2015,17(29):5377-5388. doi: 10.1039/C4CE02564D

    31. [31]

      Zhang S M, Chang Z, Hu T L, Bu X H. New Three-Dimensional Porous Metal Organic Framework with Tetrazole Functionalized Aromatic Carboxylic Acid: Synthesis, Structure, and Gas Adsorption Properties[J]. Inorg. Chem., 2010,49(24):11581-11586. doi: 10.1021/ic1017467

    32. [32]

      Zhang F, Hou L, Zhang W Y, Yan Y T, Wu Y L, Yang R F, Cao F, Wang Y Y. Two Metal-Organic Frameworks Based on a Flexible Benzimidazole Carboxylic Acid Ligand: Selective Gas Sorption and Luminescence[J]. Dalton Trans., 2017,46(43):15118-15123. doi: 10.1039/C7DT03363J

    33. [33]

      Zhang P F, Yang G P, Li G P, Yang F, Liu W N, Li J Y, Wang Y Y. Series of Water-Stable Lanthanide Metal-Organic Frameworks Based on Carboxylic Acid Imidazolium Chloride: Tunable Luminescent Emission and Sensing[J]. Inorg. Chem., 2019,58(20):13969-13978. doi: 10.1021/acs.inorgchem.9b01954

    34. [34]

      Zhao J, Dong W W, Wu Y P, Wang Y N, Wang C, Li D S, Zhang Q C. Two (3, 6)-Connected Porous Metal-Organic Frameworks Based on Linear Trinuclear[J]. J. Mater. Chem. A, 2015,3(13):6962-6969. doi: 10.1039/C4TA06537A

    35. [35]

      Sengupta A, Datta S, Su C L, Herng T S, Ding J, Vittal J J, Loh K P. Tunable Electrical Conductivity and Magnetic Property of the Two Dimensional Metal Organic Framework[J]. ACS Appl. Mater. Interfaces, 2016,8(25):16154-16159. doi: 10.1021/acsami.6b03073

    36. [36]

      Sheldrick G M. Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen[J]. Germany, 2014.

    37. [37]

      Sheldrick G M. Program for Crystal Structure Refinement, University of Göttingen[J]. Germany, 2014.

    38. [38]

      Sheldrick G M. Crystal Structure Refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.  

    39. [39]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2:A Complete Structure Solution, Refinement and Analysis Program[J]. J. Appl. Crystallogr., 2009,42:339-341. doi: 10.1107/S0021889808042726

    40. [40]

      Biswas C, Drew M G B, Asthana S, Desplanches C, Ghosh A. Mono-Aqua-Bridged Dinuclear Complexes of Cu(Ⅱ) Containing NNO Donor Schiff Base Ligand: Hydrogen-Bond-Mediated Exchange Coupling[J]. J. Mol. Struct., 2010,965:39-44. doi: 10.1016/j.molstruc.2009.11.035

    41. [41]

      Bain G A, Berry J F. Diamagnetic Corrections and Pascal's Constants[J]. J. Chem. Educ., 2008,85(4):532-536. doi: 10.1021/ed085p532

    42. [42]

      Fondo M, García-Deibe A M, Corbella M, Ribas J, Llamas-Saiz A, Bermejo M R, Sanmartín J. Ferromagnetic Exchange in a Dinuclear Copper (Ⅱ) Complex Mediated by a Methanolate Bridging Ligand[J]. Dalton Trans., 2004,21:3503-3507.  

    43. [43]

      Fondo M, García-Deibe A M, Sanmartín J, Bermejo M R, Lezama L, Rojo T. A Binuclear Copper (Ⅱ) Acetate Complex Showing a 3D Supramolecular Network with Hydrophilic Pockets: Its Unusual Magnetic Behaviour[J]. Eur. J. Inorg. Chem., 2003,20:3703-3706.  

  • 加载中
    1. [1]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    4. [4]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    5. [5]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    6. [6]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    7. [7]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    8. [8]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    9. [9]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    10. [10]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    11. [11]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    12. [12]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    15. [15]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    16. [16]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    17. [17]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    18. [18]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(6)
  • Abstract views(953)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return