Citation: Jing LIANG, Lu HAN, Bao LI, Zhen-Zhu SHI, Xing-Chi LIU, Li-Chao PENG, Xue-Yan ZOU. Fast and Efficient Immobilization Behavior of Bifunctional Magnetic Nano-Amendment Against Multi-heavy Metal[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 1981-1990. doi: 10.11862/CJIC.2021.243 shu

Fast and Efficient Immobilization Behavior of Bifunctional Magnetic Nano-Amendment Against Multi-heavy Metal

Figures(9)

  • Ferroferric oxide/L-cysteine (Fe3O4/Cys) magnetic nanospheres were synthesized by one pot method. Subsequently, the obtained Fe3O4/Cys were further modified by conjugating iminodiacetic acid (IDA) to obtain Fe3O4/Cys/IDA nanospheres. It was indicated that L-Cys was grafted on the surface of Fe3O4 by -SH group and Fe3O4/Cys/IDA, with more branched chains and more -COOH groups, was obtained by amido bond formed by the -NH2 group of Fe3O4/Cys and the -COOH group of IDA. Due to the alternative short and long chains grafting, Fe3O4/Cys/IDA nanospheres displayed high density modification of -COOH groups. Meanwhile, we found that the adsorption of Pb2+, Cd2+, Cu2+, Co2+, Ni2+, Zn2+ ions by Fe3O4/Cys/IDA nanospheres were specific adsorption and that of Hg2+ ions was unspecific adsorption. And all the complexes (Fe3O4/Cys/IDA-M, M was the metal) obtained after immobilization exhibited good stability. Experimental equilibrium data were also analyzed by the Langmuir and Freundlich models, and the best fit was obtained with the Langmuir isotherm equation, which was monolayer homogeneous adsorption. The kinetic study indicated that the adsorption kinetic data was well described by the pseudo-second kinetic model and the maximum immobilization capacity was 49.05 mg·g-1, which was a fast and efficient heavy metal immoblization material.
  • 加载中
    1. [1]

      Xiao T W, Mi M M, Wang C Y, Qian M, Chen Y H, Zheng L Q, Zhang H S, Hu Z B, Shen Z G, Xia Y. A Methionine-R-Sulfoxide Reductase, OsMSRB5, is Required for Rice Defense Against Copper Toxicity[J]. Environ. Exp. Bot., 2018,153:45-53. doi: 10.1016/j.envexpbot.2018.04.006

    2. [2]

      Zhang L Z, Wang X B, Na C. Enhanced Cr (ⅵ) Immobilization on Goethite Derived from an Extremely Acidic Environment[J]. Environ. Sci. Nano, 2019,6:2185-2194. doi: 10.1039/C9EN00277D

    3. [3]

      Tan J J, He S B, Yan S H, Li Y N, Li H, Zhang H, Zhao L, Li L J. Exogenous EDDS Modifies Copper-Induced Various Toxic Responses in Rice[J]. Protoplasma, 2014,251:1213-1221. doi: 10.1007/s00709-014-0628-x

    4. [4]

      Wanner M, Birkhofer K, Fischer T, Shimizu M, Shimano S, Puppe D. Soil Testate Amoebae and Diatoms as Bioindicators of an Old Heavy Metal Contaminated Floodplain in Japan[J]. Microb. Ecol., 2020,79:123-133. doi: 10.1007/s00248-019-01383-x

    5. [5]

      Zhang X L, Zhao X L, Li B Z, Xia J C, Miao Y C. SRO1 Regulates Heavy Metal Mercury Stress Response in Arabidopsis Thaliana[J]. Chin. Sci. Bull., 2014,59:3134-3141. doi: 10.1007/s11434-014-0356-9

    6. [6]

      Hu W Y, Wang H F, Dong L R, Huang B, Borggaard O K, Hansen H C B, He Y, Holm P E. Source Identification of Heavy Metals in Peri-Urban Agricultural Soils of Southeast China: An Integrated Approach[J]. Environ. Pollut., 2018,237:650-661. doi: 10.1016/j.envpol.2018.02.070

    7. [7]

      Viana F, Huertas R, Danulat E. Heavy Metal Levels in Fish from Coastal Waters of Uruguay[J]. Arch. Environ. Contam. Toxicol., 2005,48:530-537. doi: 10.1007/s00244-004-0100-6

    8. [8]

      Chen M, Cao X J, Mayouma L, Lu X F, Yvon J, Feng L. Trace Element Characteristics of a Gorham-Stout Syndrome Sufferer[J]. Chin. Sci. Bull., 2008,53:672-675. doi: 10.1360/csb2008-53-6-672

    9. [9]

      WANG H M, TAN K, WU F Y, CHEN Y, CHEN L H. Study of the Retrieval and Adsorption Mechanism of Soil Heavy Metals Based on Spectral Absorption Characteristics[J]. Spectroscopy and Spectral Analysis, 2020,40:316-323.  

    10. [10]

      Zhang P, Wang R L, Ju Q, Li W Q, Tran P L, Xu J. The R2R3-MYB Transcription Factor MYB49 Regulates Cadmium Accumulation[J]. Plant Physiol., 2019,180:529-542. doi: 10.1104/pp.18.01380

    11. [11]

      Guo J K, Lv X, Jia H L, Hua L, Ren X H, Muhammad H, Wei T, Ding Y Z. Effects of EDTA and Plant Growth-Promoting Rhizobacteria on Plant Growth and Heavy Metal Uptake of Hyperaccumulator Sedum Alfredii Hance[J]. J. Environ. Sci., 2020,88:361-369. doi: 10.1016/j.jes.2019.10.001

    12. [12]

      Singh P K, Wang W J, Shrivastava A K. Cadmium-Mediated Morpho-logical, Biochemical and Physiological Tuning in Three Different Anabaena Species[J]. Aquat. Toxicol., 2018,202:36-45. doi: 10.1016/j.aquatox.2018.06.011

    13. [13]

      Chen L, Gao J H, Zhu Q G, Wang Y P, Wang Y. Accumulation and Output of Heavy Metals by the Invasive Plant Spartina Alterniflora in a Coastal Salt Marsh[J]. Pedosphere, 2018,28:884-894. doi: 10.1016/S1002-0160(17)60369-2

    14. [14]

      Zou X Y, Yin Y B, Zhao Y B, Chen D Y, Dong S. Synthesis of Ferriferous Oxide/L-Cysteine Magnetic Microspheres and Their Adsorption Capacity for Pb(Ⅱ) Ions[J]. Mater. Lett., 2015,150:59-61. doi: 10.1016/j.matlet.2015.02.133

    15. [15]

      Hua M, Zhang S J, Pan B C, Zhang W M, Lv L, Zhang Q X. Heavy Metal Removal from Water/Wastewater by Nanosized Metal Oxides: A Review[J]. J. Hazard. Mater., 2012,211-212:317-331. doi: 10.1016/j.jhazmat.2011.10.016

    16. [16]

      Xu Y H, Zhao D Y. Reductive Immobilization of Chromate in Water and Soil Using Stabilized Iron Particle[J]. Water Res., 2007,41:2101-2108. doi: 10.1016/j.watres.2007.02.037

    17. [17]

      YAO L N. Arsenic Adsorption Performance of Manganese Oxide Nanoparticles. Qinghai: Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 2018.

    18. [18]

      ZHANG H P. Adsorptive Removal of Lead Ions from Aqueous Solution Using Manganese Oxides Materials. Nanjing: Nanjing University, 2017.

    19. [19]

      Liu R Q, Zhao D Y. In Situ Immobilization of Cu(Ⅱ) in Soils Using a New Class of Iron Phosphate Nanoparticles[J]. Chemosphere, 2007,68:1867-1876. doi: 10.1016/j.chemosphere.2007.03.010

    20. [20]

      Waychunas G A, Kim C S, Banfield J F. Nanoparticulate Iron Oxide Minerals in Soils and Sediments: Unique Properties and Contaminant Scavenging Mechanisms[J]. J. Nanopart. Res., 2005,7:409-433. doi: 10.1007/s11051-005-6931-x

    21. [21]

      Xie L J, Jiang R F, Zhu F, Liu H, Ouyang G F. Application of Functionalized Magnetic Nanoparticles in Sample Preparation[J]. Anal. Bioanal. Chem., 2014,406:377-399. doi: 10.1007/s00216-013-7302-6

    22. [22]

      Zhang Y K, Yan L G, Xu W Y, Guo X Y. Adsorption of Pb(Ⅱ) and Hg (Ⅱ) from Aqueous Solution Using Magnetic CoFe2O4-Reduced Graphene Oxide[J]. J. Mol. Liq., 2014,191:177-182. doi: 10.1016/j.molliq.2013.12.015

    23. [23]

      Li T, Yu Z Y, Yang T L, Xu G L, Guan Y P, Guo C. Modified Fe3O4 Magnetic Nanoparticles for COD Removal in Oil Field Produced Water and Regeneration[J]. Environ. Technol. Innovation, 2021,23:101630-101639. doi: 10.1016/j.eti.2021.101630

    24. [24]

      Zou X Y, Li K, Zhao Y B, Zhang Y, Li B J, Song C P. Ferroferric Oxide/L-Cysteine Magnetic Nanospheres for Capturing Histidine-Tagged Proteins[J]. J. Mater. Chem. B, 2013,1:5108-5113. doi: 10.1039/c3tb20726a

    25. [25]

      Yin Y B, Wei G M, Zou X Y, Zhao Y B. Functionalized Hollow Silica Nanospheres for His-Tagged Protein Purification[J]. Sens. Actuators B, 2015,209:701-705. doi: 10.1016/j.snb.2014.12.049

    26. [26]

      TIAN S F, ZOU X Y, LU H T. Correlation Between Protein Zeta Potential and Capacity Factor of Ion Exchange Chromatography[J]. Chinese J. Inorg. Chem., 2015,31:1329-1334.  

    27. [27]

      Shen X F, Wang Q, Chen W L, Pang Y H. One-Step Synthesis of Water-Dispersible Cysteine Functionalized Magnetic Fe3O4 Nanoparticles for Mercury (Ⅱ) Removal from Aqueous Solutions[J]. Appl. Surf. Sci., 2014,317:1028-1034. doi: 10.1016/j.apsusc.2014.09.033

    28. [28]

      Xu J Y, Tang S Y, Qiu Y R. Pretreatment of Poly(acrylic acid) Sodium by Continuous Diafiltration and Time Revolution of Filtration Potential[J]. J. Cent. South Univ., 2019,26:577-586. doi: 10.1007/s11771-019-4029-3

    29. [29]

      YE J F, LIN D Q, YAO S J. Study on the Correlation Between Protein Zeta Likeness and Ion Exchange Layering Capacity Factors[J]. Journal of Chemical Engineering of Chinese Universities, 2007,21:381-385. doi: 10.3321/j.issn:1003-9015.2007.03.004

    30. [30]

      JIANG Z Q, SONG S, DOU H J, SUN K, WANG Y M, HUANG C F, WEI Z H, QU G X. Synthesis of Polycarboxylic Ligand Capped Fe3O4 Nanoparticles with Excellent Water-Dispersibility via a Ligand-Exchange Approach[J]. Chem. J. Chinese Universities, 2012,33:2609-2616. doi: 10.7503/cjcu20120626

    31. [31]

      Li B J, Zou X Y, Zhao Y B, Sun L, Li S L. Biofunctionalization of Silica Microspheres for Protein Separation[J]. Mater. Sci. Eng. C, 2013,33:2595-2600. doi: 10.1016/j.msec.2013.02.030

    32. [32]

      WANG G F, LI M G, KAN X W. Preparation of Silver Nanoparticles/Cysteine Modified Gold Electrode and Determination of Hydroquinone[J]. Chinese Journal of Applied Chemistry, 2005,22(2):168-171. doi: 10.3969/j.issn.1000-0518.2005.02.011

    33. [33]

      ZOU X Y, LI B J, LI S L, ZHAO Y. Surface Modification of Nanometer Silica and Separation of Glutathione S-Transferase[J]. Journal of Henan University (Natural Science), 2011,41:366-369. doi: 10.3969/j.issn.1003-4978.2011.04.009

    34. [34]

      Ghasemi E, Heydari A, Sillanpää M. Central Composite Design for Optimization of Removal of Trace Amounts of Toxic Heavy Metal Ions from Aqueous Solution Using Magnetic Fe3O4 Functionalized by Guanidine Acetic Acid as an Efficient Nano-Adsorbent[J]. Microchem. J., 2019,147:133-141. doi: 10.1016/j.microc.2019.02.056

    35. [35]

      Zou X Y, Zhao Y B, Zhang Z J. Preparation of Hydroxyapatite Nano-structures with Different Morphologiesand Adsorption Behavior on Seven Heavy Metals Ions[J]. J. Contam. Hydrol., 2019,226:103538-103544. doi: 10.1016/j.jconhyd.2019.103538

  • 加载中
    1. [1]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    13. [13]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    18. [18]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    19. [19]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(2)
  • Abstract views(828)
  • HTML views(117)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return