Citation: Wen-Juan JI, Dan WANG, Guo-Jiao WANG, Xiu-Ling SUN, Yun-Long FU. High Performance Supercapacitors Constructed with Isomorphic MOFs Doped Graphene Oxide Electrode Materials[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 1931-1942. doi: 10.11862/CJIC.2021.241 shu

High Performance Supercapacitors Constructed with Isomorphic MOFs Doped Graphene Oxide Electrode Materials

Figures(15)

  • A series of X-MOF@GO composited with X-MOF (X6O(TATB)4(H+)2·(H2O)8·(DMF)2, X=Zn, Co, Ni; H3TATB=4, 4', 4″-s-triazine-2, 4, 6-triyl-tribenzoic acid; DMF=N, N-dimethylformamide) and graphene oxide (GO) as supercapacitor electrode materials were synthesized by one-step self-assembly under hydrothermal conditions. X-ray powder diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy showed that X-MOF@GO composites were successfully synthesized. Ni-MOF@1.5GO electrode with the best performance delivered a specific capacitance of 694.8 F·g-1 at 0.5 A·g-1. Moreover, the specific capacitance of Ni-MOF@1.5GO electrode was nearly twice of Ni-MOF, while the capacitance of Ni-MOFs@1.0GO retained about 81.2% after 1 000 cycles indicating that GO doped Ni-MOF can boost the performance of MOFs materials effectively. A symmetrical capacitor based on Ni-MOF@1.5GO//AC (AC=activated carbon) electrode exhibited a high energy density of 754.3 W·kg-1 at power density of 15.4 Wh·kg-1, while the capacitance retention reached about 70.0% after 3 000 cycles.
  • 加载中
    1. [1]

      Sheberla D, Bachman J C, Elias J S, Sun C J, Shao-Horn Y, Dincă M. Conductive MOF Electrodes for Stable Supercapacitors with High Areal Capacitance[J]. Nat. Mater., 2017,16:220-224. doi: 10.1038/nmat4766

    2. [2]

      Bi S, Banda H, Chen M, Niu L, Chen M Y, Wu T Z, Wang J S, Wang R X, Feng J M, Chen T Y, Dincă M, Kornyshev A A, Feng G. Molecular Understanding of Charge Storage and Charging Dynamics in Superca-pacitors with MOF Electrodes and Ionic Liquid Electrolytes[J]. Nat. Mater., 2020,19:552-558. doi: 10.1038/s41563-019-0598-7

    3. [3]

      Campagnol N, Romero-Vara R, Deleu W, Stappers L, Binnemans K, De Vos D E, Fransaer J. A Hybrid Supercapacitor based on Porous Carbon and the Metal-Organic Framework MIL-100(Fe)[J]. ChemElectroChem, 2014,1(7):1182-1188. doi: 10.1002/celc.201402022

    4. [4]

      Zhu G L, Wen H, Ma M, Wang W Y, Yang L, Wang L C, Shi X F, Cheng X W, Sun X P, Yao Y D. A Self-Supported Hierarchical Co-MOF as a Supercapacitor Electrode with Ultrahigh Areal Capacitance and Excellent Rate Performance[J]. Chem. Commun., 2018,54(74):10499-10502. doi: 10.1039/C8CC03669A

    5. [5]

      Xu X Y, Song Y H, Xue R N, Zhou J K, Gao J P, Xing F B. Amorphous CoMoS4 for a Valuable Energy Storage Material Candidate[J]. Chem. Eng. J., 2016,301:266-275. doi: 10.1016/j.cej.2016.05.033

    6. [6]

      Xiao Z Y, Bao Y X, Li Z J, Huai X D, Wang M H, Liu P, Wang L. Construction of Hollow Cobalt-Nickel Phosphate Nanocages through a Controllable Etching Strategy for High Supercapacitor Performances[J]. ACS Appl. Energy Mater., 2019,2(2):1086-1092. doi: 10.1021/acsaem.8b01627

    7. [7]

      Qi K, Hou R Z, Zaman S, Qiu Y B, Xia B Y, Duan H W. Construction of Metal-Organic Framework/Conductive Polymer Hybrid for All-Solid-State Fabric Supercapacitor[J]. ACS Appl. Mater. Interfaces, 2018,10(21):18021-18028. doi: 10.1021/acsami.8b05802

    8. [8]

      Mei H, Mei Y J, Zhang S Y, Xiao Z Y, Xu B, Zhang H B, Fan L L, Huang Z D, Kang W P, Sun D F. Bimetallic-MOF Derived Accordion-like Ternary Composite for High-Performance Supercapacitors[J]. Inorg. Chem., 2018,57(17):10953-10960. doi: 10.1021/acs.inorgchem.8b01574

    9. [9]

      Gupta A K, Saraf M, Bharadwaj P K, Mobin S M. Dual Functionalized Cu MOF-Based Composite for High-Performance Supercapacitors[J]. Inorg. Chem., 2019,58(15):9844-9854. doi: 10.1021/acs.inorgchem.9b00909

    10. [10]

      Ajdari F B, Kowsari E, Shahrak M N, Ehsani A, Kiaei Z, Torkzaban H, Ershadi M, Eshkalak S K, Haddadi-Asl V, Chinnappan A, Ramakrishna S. A Review on the Fifield Patents and Recent Developments over the Application of Metal Organic Frameworks (MOFs) in Supercapacitors[J]. Coord Chem. Rev., 2020,422213441. doi: 10.1016/j.ccr.2020.213441

    11. [11]

      Kazemi S H, Hosseinzadeh B, Kazemi H, Kiani M A, Hajati S. Facile Synthesis of Mixed Metal-Organic Frameworks: Electrode Materials for Supercapacitors with Excellent Areal Capacitance and Operational Stability[J]. ACS Appl. Mater. Interfaces, 2018,10(27):23063-23073. doi: 10.1021/acsami.8b04502

    12. [12]

      Zheng S S, Li X R, Yan B Y, Hu Q, Xu Y X, Xiao X, Xue H G, Pang H. Transition-Metal (Fe, Co, Ni) Based Metal-Organic Frameworks for Electrochemical Energy Storage[J]. Adv. Energy Mater., 2017,7(18)1602733. doi: 10.1002/aenm.201602733

    13. [13]

      Cheng Q H, Tao K, Han X, Yang Y J, Yang Z, Ma Q X, Han L. Ultrathin Ni-MOF Nanosheet Arrays Grown on Polyaniline Decorated Ni Foam as an Advanced Electrode for Asymmetric Supercapacitors with High Energy Density[J]. Dalton Trans., 2019,48(13):4119-4123. doi: 10.1039/C9DT00386J

    14. [14]

      Deng T, Zhang W, Arcelus O, Wang D, Shi X Y, Zhang X Y, Carrasco J, Rojo T, Zheng W T. Vertically Co-Oriented Two Dimensional Metal-Organic Frameworks for Packaging Enhanced Supercapacitive Performance[J]. Comm. Chem., 2018,16. doi: 10.1038/s42004-017-0005-8

    15. [15]

      Shi H T, Jang S Y, Reza-Ugalde A, Naguib H E. Hierarchically Structured Nitrogen-Doped Multilayer Reduced Graphene Oxide for Flexible Intercalated Supercapacitor Electrodes[J]. ACS Appl. Energy Mater., 2019,3(1):987-997.

    16. [16]

      Young C, Kim J, Kaneti Y V, Yamauchi Y. One-Step Synthetic Strategy of Hybrid Materials from Bimetallic Metal-Organic Frameworks for Supercapacitor Applications[J]. ACS Appl. Energy Mater., 2018,1(5):2007-2015. doi: 10.1021/acsaem.8b00103

    17. [17]

      Zhang Y D, Lin B P, Sun Y, Zhang X Q, Yang H, Wang J C. Carbon Nanotubes@Metal-Organic Frameworks as Mn-Based Symmetrical Supercapacitor Electrodes for Enhanced Charge Storage[J]. RSC Adv., 2015,5(72):58100-58106. doi: 10.1039/C5RA11597C

    18. [18]

      Jiao Y, Qu C, Zhao B T, Liang Z B, Chang H B, Kumar S, Zou R Q, Liu M L, Walton K S. High-Performance Electrodes for a Hybrid Supercapacitor Derived from a Metal-Organic Framework/Graphene Composite[J]. ACS Appl. Energy Mater., 2019,2(7):5029-5038. doi: 10.1021/acsaem.9b00700

    19. [19]

      Mallick A, Liang H F, Shekhah O, Jia J T, Mouchaham G, Shkurenko A, Belmabkhout Y, Alshareef H N, Eddaoudi M. Made-to-Order Porous Electrodes for Supercapacitors: MOFs Embedded with Redox-Active Centers as a Ease Study[J]. Chem. Commun., 2020,56:1883-1886. doi: 10.1039/C9CC08860A

    20. [20]

      Xue Y Y, Li S N, Jiang Y C, Hu M C, Zhai Q G. Quest for 9-Connected Robust Metal-Organic Framework Platforms on the Base of[J]. J. Mater. Chem. A, 2019,7:4640-4650. doi: 10.1039/C8TA09080G

    21. [21]

      Hou X Y, Yan X L, Wang X, Li S N, Jiang Y C, Hu M C, Zhai Q G. Excellent Supercapacitor Performance of Robust Nickel-Organic Framework Materials Achieved by Tunable Porosity, Inner-Cluster Redox, and In Situ Fabrication with Graphene Oxide[J]. Cryst. Growth Des., 2018,18:6035-6045. doi: 10.1021/acs.cgd.8b00881

    22. [22]

      Xu H Z, Ye K, Zhu K, Yin J L, Yan J, Wang G L, Cao D X. Efficient Bifunctional Catalysts Synthesized from Three-Dimensional Ni/Fe Bimetallic Organic Frameworks for Overall Urea Electrolysis[J]. Dalton Trans., 2020,49(17):5646-5652. doi: 10.1039/D0DT00605J

    23. [23]

      Chen Y W, Lv D F, Wu J L, Xiao J, Xi H X, Xia Q B, Li Z. A New MOF-505@GO Composite with High Selectivity for CO2/CH4 and CO2/N2 Separation[J]. Chem. Eng. J., 2017,308:1065-1072. doi: 10.1016/j.cej.2016.09.138

    24. [24]

      Yan X L, Li X J, Yan Z F, Komarneni S. Porous Carbons Prepared by Direct Carbonization of MOFs for Supercapacitors[J]. Appl. Surf. Sci., 2014,308:306-310. doi: 10.1016/j.apsusc.2014.04.160

    25. [25]

      Wang L, Feng X, Ren L T, Piao Q H, Zhong J Q, Wang Y B, Li H W, Chen Y F, Wang B. Flexible Solid-State Supercapacitor Based on a Metal-Organic Framework Interwoven by Electrochemically-Deposited PANI[J]. J. Am. Chem. Soc., 2015,137:4920-4923. doi: 10.1021/jacs.5b01613

    26. [26]

      Zhu L L, Hao C, Wang X H, Guo Y N. Fluffy Cotton-like GO/Zn-Co-Ni Layered Double Hydroxides Form from a Sacrificed Template GO/ZIF-8 for High Performance Asymmetric Supercapacitors[J]. ACS Sustainable Chem. Eng., 2020,8(31):11618-11629. doi: 10.1021/acssuschemeng.0c02916

    27. [27]

      Al-Naddaf Q, Al-Mansour M, Thakkar H, Rezaei F. MOF-GO Hybrid Nanocomposite Adsorbents for Methane Storage[J]. Ind. Eng. Chem. Res., 2018,57:17470-17479. doi: 10.1021/acs.iecr.8b03638

    28. [28]

      Jin H X, Yuan D Q, Zhu S Y, Zhu X H, Zhu J L. Ni-Co Layered Double Hydroxide on Carbon Nanorods and Graphene Nanoribbons Derived from MOFs for Supercapacitors[J]. Dalton Trans., 2018,47(26):8706-8715. doi: 10.1039/C8DT01882K

    29. [29]

      Hou Y, Chai D F, Li B N, Pang H J, Ma H Y, Wang X M, Tan L C. Polyoxometalate-Incorporated Metallacalixarene@Graphene Composite Electrodes for High-Performance Supercapacitors[J]. ACS Appl. Mater. Interfaces, 2019,11(23):20845-20853. doi: 10.1021/acsami.9b04649

    30. [30]

      Hong J W, Park S J, Kim S. Synthesis and Electrochemical Characterization of Nanostructured Ni-Co -MOF/Graphene Oxide Composites as Capacitor Electrodes[J]. Electrochim. Acta, 2019,311:62-71. doi: 10.1016/j.electacta.2019.04.121

    31. [31]

      Salgado S, Pu L, Maheshwari V. Targeting Chemical Morphology of Graphene Oxide for Self-Assembly and Subsequent Templating of Nanoparticles: A Composite Approaching Capacitance Limits in Graphene[J]. J. Phys. Chem. C, 2012,116(22):12124-12130. doi: 10.1021/jp3023875

    32. [32]

      Hu X R, Li J F, Wu Q S, Zhang Q W, Wang X. MOF-Derived Ni(OH)2 Nanocubes/GO For High-Performance Supercapacitor[J]. ChemistrySelect, 2019,4(27):7922-7926. doi: 10.1002/slct.201901616

    33. [33]

      Zhou Y J, Mao Z M, Wang W, Yang Z K, Liu X. In-Situ Fabrication of Graphene Oxide Hybrid Ni-Based Metal-Organic Framework (Ni-MOFs@GO) with Ultrahigh Capacitance as Electrochemical Pseudo-capacitor Materials[J]. ACS Appl. Mater. Interfaces, 2016,8(42):28904-28916. doi: 10.1021/acsami.6b10640

    34. [34]

      CHU M, LI X, LI N, HOU M J, LI X Z, DONG Y Z, WANG L. Improved Electrocatalytic Hydrogen-Evolution Performance of Metal -Organic-Framework MOF(Ni)-74 by Using Graphene Oxide Decorations[J]. Mater. Rep., 2018,32(5):1417-1422.  

    35. [35]

      Sun D F, Ma S Q, Ke Y X, Petersen T M, Zhou H C. Synthesis, Characterization, and Photoluminescence of Isostructural Mn, Co, and Zn MOFs Having a Diamondoid Structure with Large Tetrahedral Cages and High Thermal Stability[J]. Chem. Commun., 2005(21):2663-2665. doi: 10.1039/b502007g

    36. [36]

      Jiang X B, Li G N, Lu D P, Xiao W, Ruan X H, Li X C, He G H. Hybrid Control Mechanism of Crystal Morphology Modification for Ternary Solution Treatment via Membrane Assisted Crystallization[J]. Cryst. Growth Des., 2018,18:934-943. doi: 10.1021/acs.cgd.7b01424

    37. [37]

      Yadav H, Sinha N, Kumar B. New Geometrical Modeling to Study Crystal Morphology[J]. Cryst. Growth Des., 2016,16:4559-4566. doi: 10.1021/acs.cgd.6b00665

    38. [38]

      Qu C, Jiao Y, Zhao B T, Chen D C, Zou R Q, Walton K S, Liu M L. Nickel-Based Pillared MOFs for High-Performance Supercapacitors: Design, Synthesis and Stability Study[J]. Nano Energy, 2016,26:66-73. doi: 10.1016/j.nanoen.2016.04.003

    39. [39]

      Saraf M, Rajak R, Mobin S M. Solid-Type Supercapacitor of Reduced Graphene Oxide-Metal Organic Framework Composite Coated on Carbon Fiber Paper[J]. J. Mater. Chem. A, 2016,4:16432-6445. doi: 10.1039/C6TA06470A

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    7. [7]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

Metrics
  • PDF Downloads(3)
  • Abstract views(911)
  • HTML views(262)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return