Citation: Qi-Chao ZOU, Yan MA, Dian-Jun CHI, Hong-Bin QIAO, Jun-Ying ZHANG, Qian CHEN, Yu-Die SUN, Jian ZHANG, Kui ZHANG, Sheng-Jun LIU. Synthesis of Quasi-MIL-53(Fe) Photocatalysts for Enhanced Visible Light Photocatalytic Degradation of Organic Dyes[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2289-2297. doi: 10.11862/CJIC.2021.240 shu

Synthesis of Quasi-MIL-53(Fe) Photocatalysts for Enhanced Visible Light Photocatalytic Degradation of Organic Dyes

Figures(5)

  • Quasi-metal-organic-frameworks (MOFs) derivative-based MFe-T (T℃ stands for calcination temperature) photocatalysts with a porous structure were synthesized by the pyrolysis of MIL-53(Fe) (termed MFe hereafter). Among the tested catalysts, MFe-250 exhibited the highest photodegradation performance, degradation of 99% methylene blue (MB) within 90 min. From the photocurrent and electrochemical impedance spectroscopy results, the electronic transmission capability of MFe-250 exceeded that of MFe. Furthermore, trapping experiments revealed that while hydroxyl radicals (·OH) were essential intermediates in the photocatalytic degradation of MB. Additionally, a mechanism for the photocatalytic process was proposed.
  • 加载中
    1. [1]

      Xu J X, Gao J Y, Liu Y, Li Q Y, Wang L. Fabrication of In2O3/Co3O4-Palygorskite Composites by the Pyrolysis of In/Co-MOFs for Efficient Degradation of Methylene Blue and Tetracycline[J]. Mater. Res. Bull., 2017,91:1-8. doi: 10.1016/j.materresbull.2017.03.018

    2. [2]

      Liu N, Huang W Y, Tang M Q, Yin C C, Gao B, Li Z M, Tang L, Lei J Q, Cui L F, Zhang X D. In-Situ Fabrication of Needle-Shaped MIL-53(Fe) with 1T-MoS2 and Study on Its Enhanced Photocatalytic Mechanism of Ibuprofen[J]. Chem. Eng. J., 2019,359:254-264. doi: 10.1016/j.cej.2018.11.143

    3. [3]

      Yi F Y, Zhang R, Wang H, Chen L F, Han L, Jiang H L, Xu Q. Metal-Organic Frameworks and Their Composites: Synthesis and Electrochemical Applications[J]. Small Methods, 2017,11700187. doi: 10.1002/smtd.201700187

    4. [4]

      Fang X, Zong B Y, Mao S. Metal-Organic Framework-Based Sensors for Environmental Contaminant Sensing[J]. Nano-Micro Lett., 2018,1064. doi: 10.1007/s40820-018-0218-0

    5. [5]

      Chen L Y, Xu Q. Metal-Organic Framework Composites for Catalysis[J]. Matter, 2019,1:57-89. doi: 10.1016/j.matt.2019.05.018

    6. [6]

      Li H, Wang K C, Sun Y J, Lollar C T, Li J T, Zhou H C. Recent Advances in Gas Storage and Separation Using Metal-Organic Frameworks[J]. Mater. Today, 2018,21:108-121. doi: 10.1016/j.mattod.2017.07.006

    7. [7]

      Lu L L, Wu B Y, Shi W, Cheng P. Metal-Organic Framework-Derived Heterojunctions as Nanocatalysts for Photocatalytic Hydrogen Production[J]. Inorg. Chem. Front., 2019,6:3456-3467. doi: 10.1039/C9QI00964G

    8. [8]

      Liang Z B, Zhao R, Qiu T J, Zou R Q, Xu Q. Metal-Organic Framework-Derived Materials for Electrochemical Energy Applications[J]. EnergyChem, 2019,1100001. doi: 10.1016/j.enchem.2019.100001

    9. [9]

      Li D D, Xu H Q, Jiao L, Jiang H L. Metal-Organic Frameworks for Catalysis: State of the Art, Challenges, and Opportunities[J]. EnergyChem, 2019,1100005. doi: 10.1016/j.enchem.2019.100005

    10. [10]

      Meyer K, Ranocchiari M, Bokhoven J A V. Metal Organic Frameworks for Photo-Catalytic Water Splitting[J]. Energy Environ. Sci., 2015,8:1923-1937. doi: 10.1039/C5EE00161G

    11. [11]

      Zhu J J, Li P Z, Guo W H, Zhao Y L, Zou R Q. Titanium-Based Metal-Organic Frameworks for Photocatalytic Applications[J]. Coord. Chem. Rev., 2018,359:80-101. doi: 10.1016/j.ccr.2017.12.013

    12. [12]

      Shi Y, Yang A F, Cao C S, Zhao B. Applications of MOFs: Recent Advances in Photocatalytic Hydrogen Production from Water[J]. Coord. Chem. Rev., 2019,390:50-75. doi: 10.1016/j.ccr.2019.03.012

    13. [13]

      Nandasiri M I, Jambovane S R, McGrail B P, Schaef H T, Nune S K. Adsorption, Separation, and Catalytic Properties of Densified Metal-Organic Frameworks[J]. Coord. Chem. Rev., 2016,311:38-52. doi: 10.1016/j.ccr.2015.12.004

    14. [14]

      LIU Z Q, HUANG Y Q, SUN W Y. Progress in Fluorescent Recognition and Sensing of Solvent and Small Organic Molecules Based on Metal-Organic Frameworks[J]. Chinese J. Inorg. Chem., 2017,33(11):1959-1969. doi: 10.11862/CJIC.2017.244 

    15. [15]

      LI Y L, ZHAO Y, SUN W Y. Two Zn (Ⅱ) and Cd (Ⅱ) Metal-Organic Frameworks with Mixed Ligands: Synthesis, Structure, Sorption and Luminescent Properties[J]. Chinese J. Inorg. Chem., 2020,36(6):1176-1184.  

    16. [16]

      Fan K, Jin Z L, Yuan H, Hu H Y, Bi Y P. Construction of CuO-Modified Zeolitic Imidazolate Framework-9 for Photocatalytic Hydrogen Evolution[J]. Chin. J. Catal., 2017,38:2056-2066. doi: 10.1016/S1872-2067(17)62969-3

    17. [17]

      Hou Q Q, Wu Y, Zhou S, Wei Y Y, Caro J, Wang H H. Ultra-Tuning of the Aperture Size in Stiffened ZIF-8_Cm Frameworks with Mixed-Linker Strategy for Enhanced CO2/CH4 Separation[J]. Angew. Chem. Int. Ed., 2019,58:327-331. doi: 10.1002/anie.201811638

    18. [18]

      Liu S J, Liu J D, Hou X D, Xu T T, Tong J, Zhang J X, Ye B J, Liu B. Porous Liquid: A Stable ZIF-8 Colloid in Ionic Liquid with Permanent Porosity[J]. Langmuir, 2018,34:3654-3660. doi: 10.1021/acs.langmuir.7b04212

    19. [19]

      Wu Y P, Tian J W, Liu S, Li B, Zhao J, Ma L F, Li D S, Lan Y Q, Bu X H. Bi-Microporous Metal-Organic Frameworks with Cubane[M4(OH)4] (M=Ni, Co) Clusters and Pore-Space Partition for Electrocatalytic Methanol Oxidation Reaction[J]. Angew. Chem. Int. Ed., 2019,58:12185-12189. doi: 10.1002/anie.201907136

    20. [20]

      Liu S, Wang X, Yu H G, Wu Y P, Li B, Lan Y Q, Wu T, Zhang J, Li D S. Two New Pseudo-Isomeric Nickel (Ⅱ) Metal-Organic Frameworks with Efficient Electrocatalytic Activity Toward Methanol Oxidation[J]. Rare Met., 2021,40:489-498. doi: 10.1007/s12598-020-01596-x

    21. [21]

      Huang D D, Wu X Q, Tian J W, Wang X K, Zhou Z H, Li D S. Assembling of a Novel 3D Ag(Ⅰ)-MOFs with Mixed Ligands Tactics: Syntheses, Crystal Structure and Catalytic Degradation of Nitrophenol[J]. Chin. Chem. Lett., 2018,29:845-848. doi: 10.1016/j.cclet.2017.09.043

    22. [22]

      Xamena F X, Corma A, Garcia H. Applications for Metal-Organic Frameworks (MOFs) as Quantum Dot Semiconductors[J]. J. Phys. Chem. C, 2007,111:80-85. doi: 10.1021/jp063600e

    23. [23]

      Choi K M, Kim D, Rungtaweevoranit B, Trickett C A, Barmanbek J T D, Alshammari A S, Yang P D, Yaghi O M. Plasmon-Enhanced Photocatalytic CO2 Conversion within Metal-Organic Frameworks under Visible Light[J]. J. Am. Chem. Soc., 2017,139:356-362. doi: 10.1021/jacs.6b11027

    24. [24]

      Lan G X, Li Z, Veroneau S S, Zhu Y Y, Xu Z W, Wang C, Lin W B. Photosensitizing Metal-Organic Layers for Efficient Sunlight-Driven Carbon Dioxide Reduction[J]. J. Am. Chem. Soc., 2018,140:12369-12373. doi: 10.1021/jacs.8b08357

    25. [25]

      Li R, Wu S K, Wan X Y, Xu H X, Xiong Y J. Cu/TiO2 Octahedral-Shell Photocatalysts Derived from Metal-Organic Framework@Semiconductor Hybrid Structures[J]. Inorg. Chem. Front., 2016,3:104-110. doi: 10.1039/C5QI00205B

    26. [26]

      Su Y, Ao D, Liu H, Wang Y. MOF-Derived Yolk-Shell CdS Microcubes with Enhanced Visible-Light Photocatalytic Activity and Stability for hydrogen Evolution[J]. J. Mater. Chem. A, 2017,5:8680-8689. doi: 10.1039/C7TA00855D

    27. [27]

      Liu S J, Zhang C, Sun Y D, Chen Q, He L F, Zhang K, Zhang J, Liu B, Chen L F. Design of Metal-Organic Framework-Based Photocatalysts for Hydrogen Generation[J]. Coord. Chem. Rev., 2020,413213266. doi: 10.1016/j.ccr.2020.213266

    28. [28]

      Zhang W, Wang Y, Ling L J, Wang X P, Chang H J, Li R, Duan W B, Liu B. Utilizing Crystals Defects to Boost Metal-Organic Frameworks Hydrogen Generation Abilities[J]. Microporous Mesoporous Mater., 2020,294109943. doi: 10.1016/j.micromeso.2019.109943

    29. [29]

      Liang Q, Jin J, Liu C H, Xu S, Yao C, Li Z Y. Fabrication of the Ternary Heterojunction Cd05Zn0.5S@UIO-66@g-C3N4 for Enhanced Visible-Light Photocatalytic Hydrogen Evolution and Degradation of Organic Pollutants[J]. Inorg. Chem. Front., 2018,5:335-343. doi: 10.1039/C7QI00638A

    30. [30]

      Gong Y, Zhao X, Zhang H, Yang B, Xiao K, Guo T, Zhang J J, Shao H X, Wang Y B, Yu G. MOF-Derived Nitrogen Doped Carbon Modified g-C3N4 Heterostructure Composite with Enhanced Photocatalytic Activity for Bisphenol A Degradation with Peroxymonosulfate under Visible Light Irradiation[J]. Appl. Catal. B, 2018,233:35-45. doi: 10.1016/j.apcatb.2018.03.077

    31. [31]

      Yuan C, Cheng P F, Li J, Gao X L, Gao X S, Wang X, Jin M L, Nötzel R, Zhou G F, Zhang Z, Liu J M. ZIF-67 with Argon Annealing tReatment for Visible Light Responsive Degradation of Organic Dyes in a Wide pH Range[J]. Microporous Mesoporous Mater., 2019,285:13-20. doi: 10.1016/j.micromeso.2019.04.062

    32. [32]

      Liu S J, Zou Q C, Ma Y, Sun W, Li Y, Zhang J, Zhang C, He L F, Sun Y D, Chen Q, Liu B, Zhang H X, Zhang K. A Novel Amorphous CoSx/NH2-MIL-125 Composite for Photocatalytic Degradation of Rhodamine B under Visible Light[J]. J. Mater. Sci., 2020,55:16171-16183. doi: 10.1007/s10853-020-05210-4

    33. [33]

      Du Y, Chen R Z, Yao J F, Wang H T. Facile Fabrication of Porous ZnO by Thermal Treatment of Zeolitic Imidazolate Framework-8 and Its Photocatalytic Activity[J]. J. Alloys Compd., 2013,551:125-130. doi: 10.1016/j.jallcom.2012.10.045

    34. [34]

      Zhang Y, Zhou J B, Chen X, Feng Q Q, Cai W Q. MOF-Derived C-Doped ZnO Composites for Enhanced Photocatalytic Performance under Visible Light[J]. J. Alloys Compd., 2019,777:109-118. doi: 10.1016/j.jallcom.2018.10.383

    35. [35]

      Ma X, Wang L, Zhang Q, Jiang H L. Switching on the Photocatalysis of Metal-Organic Frameworks by Engineering Structural Defects[J]. Angew. Chem. Int. Ed., 2019,58:12175-12179. doi: 10.1002/anie.201907074

    36. [36]

      Ai L H, Zhang C H, Li L L, Jiang J. Iron Terephthalate Metal-Organic Framework: Revealing the Effective Activation of Hydrogen Peroxide for the Degradation of Organic Dye under Visible Light Irradiation[J]. Appl. Catal. B, 2014,148-149:191-200. doi: 10.1016/j.apcatb.2013.10.056

    37. [37]

      Tsumori N, Chen L Y, Wang Q J, Zhu Q L, Kitta M, Xu Q. Quasi-MOF: Exposing Inorganic Nodes to Guest Metal Nanoparticles for Drastically Enhanced Catalytic Activity[J]. Chem, 2018,4:845-856. doi: 10.1016/j.chempr.2018.03.009

    38. [38]

      Lin R B, Li S M, Wang J Y, Xu J P, Xu C H, Wang J, Li C X, Li Z Q. Facile Generation of Carbon Quantum Dots in MIL-53(Fe) Particles as Localized Electron Acceptors for Enhancing Their Photocatalytic Cr(Ⅵ) Reduction[J]. Inorg. Chem. Front., 2018,5:3170-3177.  

    39. [39]

      Hu L X, Deng G H, Lu W C, Pang S W, Hu X. Deposition of CdS Nanoparticles on MIL-53(Fe) Metal-Organic Framework with Enhanced Photocatalytic Degradation of RhB under Visible Light Irradiation[J]. Appl. Surf. Sci., 2017,410:401-413. doi: 10.1016/j.apsusc.2017.03.140

    40. [40]

      Guo T, Wang K, Zhang G K, Wu X Y. A Novel α-Fe2O3@g-C3N4 Catalyst: Synthesis Derived from Fe-Based MOF and Its Superior Photo-Fenton Performance[J]. Appl. Surf. Sci., 2019,469:331-339. doi: 10.1016/j.apsusc.2018.10.183

    41. [41]

      Xu W K, Xue W J, Huang H L, Wang J S, Zhong C L, Mei D H. Morphology Controlled Synthesis of α-Fe2O3-x with Benzimidazole-Modified Fe-MOFs for Enhanced Photo-Fenton-like Catalysis[J]. Appl. Catal. B, 2021,291120129. doi: 10.1016/j.apcatb.2021.120129

    42. [42]

      Li X Y, Pi Y H, Xia Q B, Li Z, Xiao J. TiO2 Encapsulated in Salicylaldehyde-NH2-MIL-101(Cr) for Enhanced Visible Light-Driven Photodegradation of MB[J]. Appl. Catal. B, 2016,191:192-201. doi: 10.1016/j.apcatb.2016.03.034

    43. [43]

      Yuan X Z, Wang H, Wu Y, Zeng G M, Chen X H, Leng L J, Wu Z B, Li H. One-Pot Self-Assembly and Photoreduction Synthesis of Silver Nanoparticle-Decorated Reduced Graphene Oxide/MIL-125(Ti) Photocatalyst with Improved Visible Light Photocatalytic Activity[J]. Appl. Organomet. Chem., 2016,30:289-296. doi: 10.1002/aoc.3430

    44. [44]

      Wang H, Yuan X Z, Wu Y, Zeng G M, Chen X H, Leng L J, Li H. Synthesis and Applications of Novel Graphitic Carbon Nitride/Metal-Organic Frameworks Mesoporous Photocatalyst for Dyes Removal[J]. Appl. Catal. B, 2015,174-175:445-454. doi: 10.1016/j.apcatb.2015.03.037

    45. [45]

      Wang H, Yuan X Z, Wu Y, Zeng G M, Chen X H, Leng L J, Wu Z B, Jiang L B, Li H. Facile Synthesis of Amino-Functionalized Titanium Metal-Organic Frameworks and Their Superior Visible-Light Photocatalytic Activity for Cr(Ⅵ) Reduction[J]. J. Hazard. Mater., 2015,286:187-194. doi: 10.1016/j.jhazmat.2014.11.039

    46. [46]

      Wang Q, Wang W, Zhong L L, Liu D M, Cao X Z, Cui F Y. Oxygen Vacancy-Rich 2D/2D BiOCl-g-C3N4 Ultrathin Heterostructure Nanosheets for Enhanced Visible-Light-Driven Photocatalytic Activity in Environmental Remediation[J]. Appl. Catal. B, 2018,220:290-302. doi: 10.1016/j.apcatb.2017.08.049

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    3. [3]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    4. [4]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    5. [5]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    6. [6]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    7. [7]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    8. [8]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    9. [9]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    10. [10]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    11. [11]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    12. [12]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    13. [13]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    14. [14]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    15. [15]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    16. [16]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    17. [17]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    18. [18]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    19. [19]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(20)
  • Abstract views(861)
  • HTML views(179)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return