Citation: Ken-Ken LI, Song-Lei WANG, Rui-Ming LUO, Liang MA, Li LIU, Pei-Yuan WEI, Ye ZHANG. Nickel Bicarbonate Nanoparticles Loaded on Carbon Paper for Enzyme-Free Glucose Electrochemical Sensor[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 2002-2010. doi: 10.11862/CJIC.2021.239 shu

Nickel Bicarbonate Nanoparticles Loaded on Carbon Paper for Enzyme-Free Glucose Electrochemical Sensor

  • Corresponding author: Song-Lei WANG, wangsonglei163@126.com
  • Received Date: 26 April 2021
    Revised Date: 30 August 2021

Figures(8)

  • Nickel bicarbonate nanoparticles were grown in situ on carbon paper by one-step hydrothermal method. Powder X-ray diffraction and scanning electron microscopy were used to characterize the structure and morphology of the material. It was found that when pure phase Ni(HCO3)2 was loaded on carbon paper, it could provide more catalytically active sites which is beneficial to electron transport and catalytic reaction. Cyclic voltammetry and timecurrent response curves showed that the detection limit of the electrode was 0.98 μmol·L-1, the linear range was 2.95-1.02 mmol·L-1, and the sensitivity was 935 μA·L·mmol-1·cm-2. At the same time, it also exhibited excellent specificity and stability. In addition, the sensor can realize the rapid detection of glucose in dairy products. These results show that the synergistic effect of transition metal and conductive substrate can enhance the overall conductivity and catalytic performance of the composite material.
  • 加载中
    1. [1]

      WU J, LIU Y D, LI B, HU J. Qualitative and Quantitative Detection of Glucose and Sucrose in Milk Powder Based on Terahertz Spectroscopy[J]. Spectrosc. Spectr. Anal., 2019,39(8):2568-2573.  

    2. [2]

      Liu S, Tian J Q, Wang L, Luo Y L, Sun X P. A General Strategy for the Production of Photoluminescent Carbon Nitride Dots from Organic Amines and Their Application as Novel Peroxidase-like Catalysts for Colorimetric Detection of H2O2 and Glucose[J]. RSC Adv., 2012,2(2):411-413. doi: 10.1039/C1RA00709B

    3. [3]

      Larsen T. Fluorometric Determination of Free Glucose and Glucose 6-Phosphate in Cows' Milk and Other Opaque Matrices[J]. Food Chem, 2015,166:283-286. doi: 10.1016/j.foodchem.2014.06.017

    4. [4]

      Xie W Q, Gong Y X, Yu K X. Rapid Quantitative Detection of Glucose Content in Glucose Injection by Reaction Headspace Gas Chromatography[J]. J. Chromatogr. A, 2017,1520:143-146. doi: 10.1016/j.chroma.2017.09.018

    5. [5]

      Parashuram L, Sreenivasa S, Akshatha S, Udayakumar V, Kumar S S. A Non-enzymatic Electrochemical Sensor Based on ZrO2: Cu(Ⅰ) Nano-sphere Modified Carbon Paste Electrode for Electro-catalytic Oxidative Detection of Glucose in Raw Citrus Aurantium var[J]. Sinensis. Food Chem., 2019,300125178. doi: 10.1016/j.foodchem.2019.125178

    6. [6]

      Hui G H, Lu H Y, Jiang Z M, Zhu D H, Wan H F. Study of Small-Cell Lung Cancer Cell-Based Sensor and Its Applications in Chemo-therapy Effects Rapid Evaluation for Anticancer Drugs[J]. Biosens. Bioelectron., 2017,97:184-195. doi: 10.1016/j.bios.2017.05.050

    7. [7]

      Wang Q Z, Xu Z H, Zhao Y J, Zhangsun H, Bu T, Zhang C Q, Wang X, Wang L. Bio-inspired Self-Cleaning Carbon Cloth Based on Flower-like Ag Nanoparticles and Leaf-like MOF: A High-Performance and Reusable Substrate for SERS Detection of Azo Dyes in Soft Drinks[J]. Sens. Actuators B, 2020,329129080.  

    8. [8]

      Zheng H N, Ying X G, Wang W X, Chen Z Z, Shao C N, Zhou H M, Wang S Y, Ping X Y, Li J, Yi X M, Deng S H, Hui G H. Study of Sensitivity Evaluation on Ridgetail White Prawn (Exopalaemon Carinicauda) Quality Examination Methods[J]. Int. J. Food Prop., 2019,22(1):942-951. doi: 10.1080/10942912.2019.1617304

    9. [9]

      Zhang X H, Zhao Z D, Lou X W, Li J, Hui G H. A Maltose, L-Rhamnose Sensor Based on Porous Cu Foam and Electrochemical Amperometric i-t Scanning Method[J]. J. Food Meas. Charact., 2017,11(2):548-555. doi: 10.1007/s11694-016-9422-0

    10. [10]

      Zhao Y J, Zheng X H, Wang Q Z, Zhe T T, Bai Y W, Bu T, Zhang M, Wang L. Electrochemical Behavior of Reduced Graphene Oxide/Cyclodextrins Sensors for Ultrasensitive Detection of Imidacloprid in Brown Rice[J]. Food Chem., 2020,333127495. doi: 10.1016/j.foodchem.2020.127495

    11. [11]

      Lin L Y, Karakocak B B, Kavadiya S, Soundappan T, Biswas P. A Highly Sensitive Non-enzymatic Glucose Sensor Based on Cu/Cu2O/CuO Ternary Composite Hollow Spheres Prepared in a Furnace Aerosol Reactor[J]. Sens. Actuators B, 2018,259:745-752. doi: 10.1016/j.snb.2017.12.035

    12. [12]

      Wang X, Ge C Y, Chen K, Zhang Y X. An Ultrasensitive Non-enzymatic Glucose Sensors Based on Controlled Petal-like CuO Nanostructure[J]. Electrochim. Acta, 2018,259:225-232. doi: 10.1016/j.electacta.2017.10.182

    13. [13]

      Larsen T. Fluorometric Determination of Free Glucose and Glucose 6-Phosphate in Cows' Milk and Other Opaque Matrices[J]. Food Chem., 2015,166:283-286. doi: 10.1016/j.foodchem.2014.06.017

    14. [14]

      Xu W N, Dai S G, Wang X, He X M, Wang M J, Xi Y, Hu C G. Nanorod-Aggregated Flower-like CuO Grown on a Carbon Fiber Fabric for a Super High Sensitive Non-enzymatic Glucose Sensor[J]. J. Mater. Chem. B, 2015,3:5777-5785. doi: 10.1039/C5TB00592B

    15. [15]

      Archana V, Xia Y, Fang R Y, Gnana Kumar G. Hierarchical CuO/NiO-Carbon Nanocomposite Derived from Metal Organic Framework on Cello Tape for the Flexible and High Performance Nonenzymatic Electrochemical Glucose Sensors[J]. ACS Sustainable Chem. Eng., 2019,7(7):6707-6719. doi: 10.1021/acssuschemeng.8b05980

    16. [16]

      Chandran G T, Li X W, Ogata A, Penner R M. Electrically Transduced Sensors Based on Nanomaterials (2012—2016)[J]. Anal. Chem., 2017,89(1):249-275. doi: 10.1021/acs.analchem.6b04687

    17. [17]

      Hmadeh M, Lu Z, Liu Z, Gandara F, Furukawa H, Wan S, Augustyn V, Chang R, Liao L, Zhou F, Perre E, Ozolins V, Suenaga K, Duan X F, Dunn B, Yamamto Y, Terasaki O, Yaghi O M. New Porous Crystals of Extended Metal-Catecholates[J]. Chem. Mater., 2012,24(18):3511-3513. doi: 10.1021/cm301194a

    18. [18]

      Duan X X, Liu K L, Xu Y, Yuan M T, Gao T, Wang J. Nonenzymatic Electrochemical Glucose Biosensor Constructed by NiCo2O4@Ppy Nanowires on Nickel Foam Substrate[J]. Sens. Actuators B, 2019,292:121-128. doi: 10.1016/j.snb.2019.04.107

    19. [19]

      Cui D D, Su L, Li M J, Li C P, Xu S, Qian L R, Yang B H. Non-enzymatic Glucose Sensor Based on Micro-/nanostructured Cu/Ni Deposited on Graphene Sheets[J]. J. Electroanal. Chem., 2019,838:154-162. doi: 10.1016/j.jelechem.2019.03.005

    20. [20]

      Xu J W, Xu N, Zhang X M, Xu P, Gao B, Peng X, Mooni S, Li Y, Fu J J, Huo K F. Phase Separation Induced Rhizobia-like Ni Nanoparticles and TiO2 Nanowires Composite Arrays for Enzyme-Free Glucose Sensor[J]. Sens. Actuators B, 2017,244:38-46. doi: 10.1016/j.snb.2016.12.088

    21. [21]

      Qin L R, He L Z, Zhao J W, Zhao B L, Yin Y Y, Yang Y. Synthesis of Ni/Au Multilayer Nanowire Arrays for Ultrasensitive Non-enzymatic Sensing of Glucose[J]. Sens. Actuators B, 2017,240:779-784. doi: 10.1016/j.snb.2016.09.041

    22. [22]

      Wang X X, Jian H M, Xiao Q, Huang S P. Ammonium Nickel Phosphate on Nickel Foam with a Ni3+-Rich Surface for Ultrasensitive Nonenzymatic Glucose Sensors[J]. Appl. Surf. Sci., 2018,459:40-47.

    23. [23]

      Zhang L, Yang C L, Zhao G Y, Mu J S, Wang Y. Self-Supported Porous CoOOH Nanosheet Arrays as a Non-enzymatic Glucose Sensor with Good Reproducibility[J]. Sens. Actuators B, 2015,210:190-196. doi: 10.1016/j.snb.2014.12.113

    24. [24]

      LIU S Q, SHI X H, HUANG K L, LI X G, LI Y J, WU X W. The Mechanism of Vanadium(Ⅳ/Ⅴ) Couple Redox Reaction at Carbon Paper Electrode[J]. Chinese J. Inorg. Chem., 2009,25(3):417-421.  

    25. [25]

      National Standard for Food Safety: Determination of Fructose, Glucose, Sucrose, Maltose and Lactose in Food: GB 5009.8-2016. 2016.

    26. [26]

      Baghayeri M, Zare E N, Lakouraj M M. Novel Superparamagnetic PFu@Fe3O4 Conductive Nanocomposite as a Suitable Host for Hemoglobin Immobilization[J]. Sens. Actuators B, 2014,202:1200-1208. doi: 10.1016/j.snb.2014.06.019

    27. [27]

      Zhu W X, Wang J, Zhang W T, Hu N, Wang J, Huang L J, Wang R, Suo Y R, Wang J L. Monolithic Copper Selenide Submicron Particulate Film/Copper Foam Anode Catalyst for Ultrasensitive Electrochemical Glucose Sensing in Human Blood Serum[J]. J. Mater. Chem. B, 2018,6(5):718-724.  

    28. [28]

      Yu Z Y, Li H J, Zhang X M, Liu N K, Tan W L, Zhang X, Zhang L L. Facile Synthesis of NiCo2O4 @Polyaniline Core-Shell Nanocomposite for Sensitive Determination of Glucose[J]. Biosens. Bioelectron., 2016,75:161-165.  

    29. [29]

      Richards J A, Whitson P E, Evans D H. Electrochemical Oxidation of 2, 4, 6-Tri-tert-butylphenol[J]. J. Electroanal. Chem. Interfacial Electrochem., 1975,63(3):311-327.  

    30. [30]

      Deng Y J, Zheng H N, Yi X M, Shao C N, Xiang B, Wang S Y, Zhao Z D, Zhang X H, Hui G H. Paralytic Shellfish Poisoning Toxin Detection Based on Cell-Based Sensor and Non-linear Signal Processing Model[J]. International Journal of Food Properties, 2019,22(1):890-897.  

    31. [31]

      Figiela M, Wysokowski M, Galinski M, Jesionowski T, Stepniak I. Synthesis and Characterization of Novel Copper Oxide-Chitosan Nanocomposites for Non-enzymatic Glucose Sensing[J]. Sens. Actuators B, 2018,272:296-307.  

    32. [32]

      Shamsipur M, Najafi M, Hosseini M M. Highly Improved Electrooxidation of Glucose at a Nickel(Ⅱ) Oxide/Multi-walled Carbon Nanotube Modified Glassy Carbon Electrode[J]. Bioelectrochemistry, 2010,77(2):120-124.  

    33. [33]

      Rajendran S, Manoj D, Raju K, Dionysiou D D, Naushad M, Gracia F, Cornejo L, Graccia-Pinilla M A, Ahamad T. Influence of Mesoporous Defect Induced Mixed-Valent NiO (Ni2+/Ni3+)-TiO2 Nanocomposite for Non-enzymatic Glucose Biosensors[J]. Sens. Actuators B, 2018,264:27-37.  

    34. [34]

      Mohamed Azharudeena A, Karthigaa R, Rajarajan M, Suganthi A. Fabrication, Characterization of Polyaniline Intercalated NiO Nanocomposites and Application in the Development of Non-enzymatic Glucose Biosensor[J]. Arabian J. Chem., 2020,13(2):4053-4064.  

    35. [35]

      Zhu J J, Yin H Y, Gong J Y, Al-Furjan M S H, Nie Q L. In Situ Growth of Ni/NiO on N-Doped Carbon Spheres with Excellent Electrocatalytic Performance for Non-enzymatic Glucose Detection[J]. J. Alloys Compd., 2018,748:145-153.  

    36. [36]

      Wang F Y, Feng Y L, He S, Wang L Y, Guo M L, Cao Y J, Wang Y M, Yu Y. Nickel Nanoparticles-Loaded Three-Dimensional Porous Magnetic Graphene-like Material for Non-enzymatic Glucose Sensing[J]. Microchem. J., 2020,155104748.  

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    6. [6]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    7. [7]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    16. [16]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    19. [19]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    20. [20]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

Metrics
  • PDF Downloads(2)
  • Abstract views(803)
  • HTML views(185)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return