Citation: Ting ZHAO, Jia-Ying JIAN, Peng-Fan DONG, Hao FENG, Ya-Xin NAN, Fang-E CHANG. Preparation and Properties of Resistive Random Access Memory Based on Tin Disulfide Nanosheets[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 2020-2028. doi: 10.11862/CJIC.2021.235 shu

Preparation and Properties of Resistive Random Access Memory Based on Tin Disulfide Nanosheets

  • Corresponding author: Jia-Ying JIAN, jianjiaying@xatu.edu.cn
  • Received Date: 17 May 2021
    Revised Date: 7 September 2021

Figures(8)

  • Here, SnS2 nanosheets with the size of 50-100 nm were synthesized by hydrothermal method, and was used as the resistive layer material (Cu/PMMA/SnS2/Ag, PMMA=polymethyl methacrylate) for the first time. The results showed that the ON/OFF ratio of Cu/PMMA/SnS2/Ag resistive random access memory was about 105, and the endurance was 2.7×103. The on-state voltage and off-state voltage were only about 0.28 and -0.19 V, respectively.
  • 加载中
    1. [1]

      Guo T, Elshekh H, Yu Z, Yu B, Wang D, Kadhim M S, Chen Y Z, Hou W T, Sun B. Effect of Crystalline State on Conductive Filaments Forming Process in Resistive Switching Memory Devices[J]. Mater. Today Commun., 2019,20:100540-100555. doi: 10.1016/j.mtcomm.2019.100540

    2. [2]

      Sharma Y, Pavunny S P, Fachini E, Scott J F, Katiyar R S. Nonpolar Resistive Memory Switching with all Four Possible Resistive Switching Modes in Amorphous LaHoO3 Thin Films[J]. J. Appl. Phys., 2015,118(9):4506-4514.  

    3. [3]

      Strukov D B, Snider G S, Stewart D R, Williams R S. The Missing Memristor Found[J]. Nature, 2008,453:80-83. doi: 10.1038/nature06932

    4. [4]

      Onofrio N, Guzman D, Strachan A. Atomic Origin of Ultrafast Resistance Switching in Nanoscale Electrometallization Cells[J]. Nat. Mater., 2015,14(4):440-446. doi: 10.1038/nmat4221

    5. [5]

      Zhou G D, Sun B, Yao Y Q, Zhang H H, Zhou A K, Alameh K, Ding B F, Song Q L. Investigation of the Behaviour of Electronic Resistive Switching Memory Based on MoSe2-Doped Ultralong Se Microwires[J]. Appl. Phys. Lett., 2016,109(14):5655-5657.

    6. [6]

      Ghoneim M T, Zidan M A, Alnassar M Y, Hanna A N, Kosel J, Salama K N, Hussain M M. Flexible Electronics: Thin PZT-Based Ferroelectric Capacitors on Flexible Silicon for Nonvolatile Memory Applications[J]. Adv. Electron. Mater., 2015,1(6):1-6.  

    7. [7]

      Ungureanu M, Zazpe R, Golmar F, Stoliar P, Llopis R, Casanova F, Hueso L E. A Light-Controlled Resistive Switching Memory[J]. Adv. Mater., 2012,24(18):2496-2500. doi: 10.1002/adma.201200382

    8. [8]

      Mao S S, Zhang X J, Sun B, Li B, Zhu S H, Zheng P P, Zheng L, Xia Y D. Multi-stage Switching Phenomenon in Ultra-Thin Ag Films Embedded into SrCoO3 Multilayer Films Constructed Resistive Switching Memory Devices[J]. Funct. Mater. Lett., 2018,2:1850-1857.

    9. [9]

      Lv F Z, Gao C X, Zhang P, Dong C H, Zhang C, Xue D S. Bipolar Resistive Switching Behavior of CaTiO3 Films Grown by Hydrothermal Epitaxy[J]. RSC Adv., 2015,5(51):40714-40718. doi: 10.1039/C5RA02605A

    10. [10]

      Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R, Williams R S. Memristive Switches Enable Stateful Logic Operations via Material Implication[J]. Nature, 2010,464:873-876. doi: 10.1038/nature08940

    11. [11]

      ZHANG J Q, WU X F, MA X Y, YUAN L, HUANG K K, FEN S H. Amorphous La075Sr0.25MnO3 Film Prepared by Pulsed Laser Deposition for Translucent Resistive Memory[J]. Chinese J. Inorg. Chem., 2018,34(4):784-790.  

    12. [12]

      WU X F, YUAN L, HUANG K K, FENG S H. Memristive Effects in Inorganic Solid Materials[J]. Chinese J. Inorg. Chem., 2015,31(9):1726-1738.  

    13. [13]

      Zhao M, Zhu Y D, Wang Q W, Wei M C, Liu X L, Zhang F, Hu C, Zhang T T, Qiu D, Li M Y, Xiong R. Electric Field-Induced Coexistence of Nonvolatile Resistive and Magnetization Switching in Pt/NiO/Nb: SrTiO3 Heterostructure[J]. Appl. Phys. Lett., 2016,109(13):504-510.  

    14. [14]

      Sangwan V K, Jariwala D, Kim I S, Chen K S, Marks T J, Lauhon L J, Hersam M C. Gate-Tunable Memristive Phenomena Mediated by Grain Boundaries in Single-Layer MoS2[J]. Nat. Nanotechnol., 2015,10(5):403-406. doi: 10.1038/nnano.2015.56

    15. [15]

      Das S, Gulotty R, Sumant A V, Roelofs A. All Two-Dimensional, Flexible, Transparent, and Thinnest Thin Film Transistor[J]. Nano Lett., 2014,14(5):2861-2866. doi: 10.1021/nl5009037

    16. [16]

      Pawbake A S, Waykar R G, Late D J, Jadkar S R. Highly Transparent Wafer Scale Synthesis of Crystalline WS2 Nanoparticle Thin Film for Photodetector and Humidity Sensing Applications[J]. ACS Appl. Mater. Interfaces, 2016,8(5):3359-3384. doi: 10.1021/acsami.5b11325

    17. [17]

      SHAO Y J, SHEN J, GONG S K, CHEN W, ZHOU J. Resistance Switching Effect of CuInS2 Quantum Dots[J]. Chinese J. Inorg. Chem., 2020,36(11):2093-2099. doi: 10.11862/CJIC.2020.225 

    18. [18]

      Serag M F, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, Tokeshi M, Mizukami H, Bianco A, Baba Y. Trafficking and Subcellular Localization of Multiwalled Carbon Nanotubes in Plant Cells[J]. ACS Nano, 2011,5(1):493-499. doi: 10.1021/nn102344t

    19. [19]

      Zhai Y B, Yang X Q, Wang F, Li Z X, Ding G L, Qiu Z F, Wang Y, Zhou Y, Han S T. Infrared-Sensitive Memory Based on Direct-Grown MoS2-Upconversion-Nanoparticle Heterostructure[J]. Adv. Mater., 2018,30(49)103563.  

    20. [20]

      Sun B, Zhao W X, Liu Y H, Chen P. Resistive Switching Effect of Ag/MoS2/FTO Device[J]. Funct. Mater. Lett., 2015,8(1):50010-50014.  

    21. [21]

      Choi J Y, Yu H C, Lee J J, Jeon J H, Im J H, Jang J H, Jin S W, Kim K K, Cho S H, Chung C M. Preparation of Polyimide/Graphene Oxide Nanocomposite and Its Application to Nonvolatile Resistive Memory Device[J]. Polymers, 2018,10(8)901. doi: 10.3390/polym10080901

    22. [22]

      Bhattacharjee S, Sarkar P K, Prajapat M, Roy A. Electrical Reliability, Multilevel Data Storage and Mechanical Stability of MoS2-PMMA Nanocomposite-Based Non-Volatile Memory Device[J]. J. Phys. D: Appl. Phys., 2017,51(9):1-8.  

    23. [23]

      Rehman M M, Rehman H M M U, Gul J Z, Kim W Y, Karimov K S, Ahmed N. Decade of 2D Materials Based RRAM Devices: A Review[J]. Sci. Technol. Adv. Mater., 2020,173:236-327.  

    24. [24]

      Geng H J, Su Y J, Hao W, Xu M H, Wei L M, Yang Z, Zhang Y F. Controllable Synthesis and Photoelectric Property of Hexagonal SnS2 Nanoflakes by Triton X-100 Assisted Hydrothermal Method[J]. Mater. Lett., 2013,111(10):204-207.  

    25. [25]

      Huang Y, Sutter E, Sadowski J T, Cotlet M, Monti O L, Racke D A, Neupane M R, Wickramaratne D, Lake R K, Parkinson B A, Sutter P. Tin Disulfide-An Emerging Layered Metal Dichalcogenide Semiconductor: Materials Properties and Device Characteristics[J]. ACS Nano, 2014,8(13):10743-10755.  

    26. [26]

      Mu J L, Miao H, Liu E Z, Feng J, Teng F, Zhang D K, Kou Y M, Jin Y P, Fan J, Hu X Y. Enhanced Light Trapping and High Charge Transmission Capacities of Novel Structure for Efficient Photoelec-trochemical Water Splitting[J]. Nanoscale, 2018,10:11881-11893. doi: 10.1039/C8NR03040E

    27. [27]

      Tu F Z, Xu X, Wang P Z, Si L, Zhou X S, Bao J. A Few-Layer SnS2/Reduced Graphene Oxide Sandwich Hybrid for Efficient Sodium Storage[J]. J. Phys. Chem. C, 2017,121:3261-3293. doi: 10.1021/acs.jpcc.6b12692

    28. [28]

      Liu J Z, Xia C X, Li H L, Pan A L. High On/Off Ratio Photosensitive Field Effect Transistors Based on Few Layer SnS2[J]. Nanotechnology, 2016,27(34):1-7.

    29. [29]

      Smith R J, King P J, Lotya M, Wirtz C, Khan U, De S, O'Neill A, Duesberg G S, Grunlan J C, Moriarty G, Chen J, Wang J Z, Minett A I, Nicolosi V, Coleman J N. Large-Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions[J]. Adv. Mater., 2011,23:3944-3948. doi: 10.1002/adma.201102584

    30. [30]

      Deshpande N G, Sagade A A, Gudage Y G, Lokhande C D, Sharma R J. Growth and Characterization of Tin Disulfide (SnS2) Thin Film Deposited by Successive Ionic Layer Adsorption and Reaction (SILAR) Technique[J]. J. Alloys Compd., 2017,436(2):421-426.  

    31. [31]

      Zhang Y C, Zhang F, Yang Z J, Xue H G, Dionysiou D D. Development of a New Efficient Visible-Light-Driven Photocatalyst from SnS2 and Polyvinyl Chloride[J]. J. Catal., 2016,344:692-700. doi: 10.1016/j.jcat.2016.10.022

    32. [32]

      Liu G B, Li Z H, Hasan T, Chen X S, Zheng W, Feng W, Jia D C, Zhou Y, Hu P A. Vertically Aligned Two-Dimensional SnS2 Nanosheets with a Strong Photon Capturing Capability for Efficient Photoelectrochemical Water Splitting[J]. J. Mater. Chem. A, 2017,5(5):1989-1995. doi: 10.1039/C6TA08327G

    33. [33]

      Teng W, Wang Y M, Huang H H, Li X Y, Tang Y B. Enhanced Photoelectrochemical Performance of MoS2 Nanobelts-Loaded TiO2 Nanotube Arrays by Photo-Assisted Electrodeposition[J]. Appl. Surf. Sci., 2017,425(17):507-517.  

    34. [34]

      Takeda N, Parkinson B A. Adsorption Morphology, Light Absorption, and Sensitization Yields for Squaraine Dyes on SnS2 Surfaces[J]. J. Am. Chem. Soc., 2003,125(18):5559-5571. doi: 10.1021/ja0278483

    35. [35]

      Hu X H, Song G S, Li W Y, Peng Y L, Jiang L, Xue Y F, Liu Q, Chen Z G, Hu J Q. Phase-Controlled Synthesis and Photocatalytic Properties of SnS, SnS2 and SnS/SnS2 Heterostructure Nanocrystals[J]. Mater. Res. Bull., 2013,48(6):2325-2332. doi: 10.1016/j.materresbull.2013.02.082

    36. [36]

      Pradhan S K, Xiao B, Mishra S, Killam A, Pradhan A K. Resistive Switching Behavior of Reduced Graphene Oxide Memory Cells for Low Power Nonvolatile Device Application[J]. Sci. Rep., 2016,6:1-9. doi: 10.1038/s41598-016-0001-8

    37. [37]

      Celano U, Goux L, Belmonte A, Opsomer K, Franquet A, Schulze A, Detavernier C, Richard O, Bender H, Jurczak M, Vandervorst W. Three-Dimensional Observation of the Conductive Filament in Nanoscaled Resistive Memory Devices[J]. Nano Lett., 2014,14(5):2401-2406. doi: 10.1021/nl500049g

    38. [38]

      Hou X, Yan X, Liu C S, Ding S J, Zhang D W, Zhou P. Operation Mode Switchable Charge-Trap Memory Based on Few-Layer MoS2[J]. Semicond. Sci. Technol., 2018,33:4001-4013.

    39. [39]

      Yun D Y, Kim T W. Nonvolatile Memory Devices Based on Au/Graphene Oxide Nanocomposites with Bilateral Multilevel Characteristics[J]. Carbon, 2015,88:26-32. doi: 10.1016/j.carbon.2015.02.061

  • 加载中
    1. [1]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    2. [2]

      Yuhang ZhangWeiwei ZhaoHongwei LiuJunpeng Lü . Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-0. doi: 10.3866/PKU.WHXB202310004

    3. [3]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    4. [4]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    5. [5]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    6. [6]

      Xingyu Liao Xiangming Yi Kin Shing Chan . 追凶之路上的怪客——硫化氢. University Chemistry, 2025, 40(6): 172-176. doi: 10.12461/PKU.DXHX202408039

    7. [7]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    8. [8]

      Wen Jiang Jieli Lin Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144

    9. [9]

      Faqiong Zhao Xiaohang Qiu Yanping Ren Juanjuan Song Dongcheng Liu Xiuqiong Zeng Wenwei Zhang Mei Shi Min Hu Wan Li Yongxian Fan Yiru Wang Xiuyun Wang Weihong Li Yong Fan Jianrong Zhang Shuyong Zhang . The Use of pH Indicator Papers and pH Meters. University Chemistry, 2025, 40(5): 32-39. doi: 10.12461/PKU.DXHX202503099

    10. [10]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    11. [11]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    14. [14]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    15. [15]

      Chunguang Rong Miaojun Xu Xingde Xiang Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146

    16. [16]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    17. [17]

      Houjin Li Shuanglian Cai Yuan Zheng Zhanxiang Liu Chengshan Yuan Lin Wu Guangao Yu Jie Han Qingwen Liu Xin Du Ying Xiong Qihan Zhang Xingwen Sun Jianrong Zhang Shuyong Zhang . Basic Operations and Standardization Suggestions for Organic Chemistry Distillation Experiments. University Chemistry, 2025, 40(5): 40-54. doi: 10.12461/PKU.DXHX202411053

    18. [18]

      Zhanxiang Liu Chengshan Yuan Jie Han Shuanglian Cai Qihan Zhang Lin Wu Yuan Zheng Xingwen Sun Qingwen Liu Ying Xiong Guangao Yu Xin Du Houjin Li Jianrong Zhang Shuyong Zhang . Recommendations for Basic Operations and Standards for Organic Chemical Extraction and Washing Experiments. University Chemistry, 2025, 40(5): 55-65. doi: 10.12461/PKU.DXHX202410039

    19. [19]

      Xuewei Qian Xingwen Sun Houjin Li Zhanxiang Liu Yuan Zheng Lin Wu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Shuyong Zhang Jianrong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Recrystallization Experiments. University Chemistry, 2025, 40(5): 66-75. doi: 10.12461/PKU.DXHX202503126

    20. [20]

      Chengshan Yuan Zhanxiang Liu Xin Du Jie Han Yuan Zheng Ying Xiong Qingwen Liu Guangao Yu Lin Wu Shuanglian Cai Xingwen Sun Qihan Zhang Houjin Li Jianrong Zhang Shuyong Zhang . Standardized Operational Guidelines for Sublimation in Organic Chemistry Experiments. University Chemistry, 2025, 40(5): 76-83. doi: 10.12461/PKU.DXHX202504015

Metrics
  • PDF Downloads(17)
  • Abstract views(1479)
  • HTML views(342)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return