Citation: Ting ZHAO, Jia-Ying JIAN, Peng-Fan DONG, Hao FENG, Ya-Xin NAN, Fang-E CHANG. Preparation and Properties of Resistive Random Access Memory Based on Tin Disulfide Nanosheets[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 2020-2028. doi: 10.11862/CJIC.2021.235 shu

Preparation and Properties of Resistive Random Access Memory Based on Tin Disulfide Nanosheets

  • Corresponding author: Jia-Ying JIAN, jianjiaying@xatu.edu.cn
  • Received Date: 17 May 2021
    Revised Date: 7 September 2021

Figures(8)

  • Here, SnS2 nanosheets with the size of 50-100 nm were synthesized by hydrothermal method, and was used as the resistive layer material (Cu/PMMA/SnS2/Ag, PMMA=polymethyl methacrylate) for the first time. The results showed that the ON/OFF ratio of Cu/PMMA/SnS2/Ag resistive random access memory was about 105, and the endurance was 2.7×103. The on-state voltage and off-state voltage were only about 0.28 and -0.19 V, respectively.
  • 加载中
    1. [1]

      Guo T, Elshekh H, Yu Z, Yu B, Wang D, Kadhim M S, Chen Y Z, Hou W T, Sun B. Effect of Crystalline State on Conductive Filaments Forming Process in Resistive Switching Memory Devices[J]. Mater. Today Commun., 2019,20:100540-100555. doi: 10.1016/j.mtcomm.2019.100540

    2. [2]

      Sharma Y, Pavunny S P, Fachini E, Scott J F, Katiyar R S. Nonpolar Resistive Memory Switching with all Four Possible Resistive Switching Modes in Amorphous LaHoO3 Thin Films[J]. J. Appl. Phys., 2015,118(9):4506-4514.  

    3. [3]

      Strukov D B, Snider G S, Stewart D R, Williams R S. The Missing Memristor Found[J]. Nature, 2008,453:80-83. doi: 10.1038/nature06932

    4. [4]

      Onofrio N, Guzman D, Strachan A. Atomic Origin of Ultrafast Resistance Switching in Nanoscale Electrometallization Cells[J]. Nat. Mater., 2015,14(4):440-446. doi: 10.1038/nmat4221

    5. [5]

      Zhou G D, Sun B, Yao Y Q, Zhang H H, Zhou A K, Alameh K, Ding B F, Song Q L. Investigation of the Behaviour of Electronic Resistive Switching Memory Based on MoSe2-Doped Ultralong Se Microwires[J]. Appl. Phys. Lett., 2016,109(14):5655-5657.

    6. [6]

      Ghoneim M T, Zidan M A, Alnassar M Y, Hanna A N, Kosel J, Salama K N, Hussain M M. Flexible Electronics: Thin PZT-Based Ferroelectric Capacitors on Flexible Silicon for Nonvolatile Memory Applications[J]. Adv. Electron. Mater., 2015,1(6):1-6.  

    7. [7]

      Ungureanu M, Zazpe R, Golmar F, Stoliar P, Llopis R, Casanova F, Hueso L E. A Light-Controlled Resistive Switching Memory[J]. Adv. Mater., 2012,24(18):2496-2500. doi: 10.1002/adma.201200382

    8. [8]

      Mao S S, Zhang X J, Sun B, Li B, Zhu S H, Zheng P P, Zheng L, Xia Y D. Multi-stage Switching Phenomenon in Ultra-Thin Ag Films Embedded into SrCoO3 Multilayer Films Constructed Resistive Switching Memory Devices[J]. Funct. Mater. Lett., 2018,2:1850-1857.

    9. [9]

      Lv F Z, Gao C X, Zhang P, Dong C H, Zhang C, Xue D S. Bipolar Resistive Switching Behavior of CaTiO3 Films Grown by Hydrothermal Epitaxy[J]. RSC Adv., 2015,5(51):40714-40718. doi: 10.1039/C5RA02605A

    10. [10]

      Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R, Williams R S. Memristive Switches Enable Stateful Logic Operations via Material Implication[J]. Nature, 2010,464:873-876. doi: 10.1038/nature08940

    11. [11]

      ZHANG J Q, WU X F, MA X Y, YUAN L, HUANG K K, FEN S H. Amorphous La075Sr0.25MnO3 Film Prepared by Pulsed Laser Deposition for Translucent Resistive Memory[J]. Chinese J. Inorg. Chem., 2018,34(4):784-790.  

    12. [12]

      WU X F, YUAN L, HUANG K K, FENG S H. Memristive Effects in Inorganic Solid Materials[J]. Chinese J. Inorg. Chem., 2015,31(9):1726-1738.  

    13. [13]

      Zhao M, Zhu Y D, Wang Q W, Wei M C, Liu X L, Zhang F, Hu C, Zhang T T, Qiu D, Li M Y, Xiong R. Electric Field-Induced Coexistence of Nonvolatile Resistive and Magnetization Switching in Pt/NiO/Nb: SrTiO3 Heterostructure[J]. Appl. Phys. Lett., 2016,109(13):504-510.  

    14. [14]

      Sangwan V K, Jariwala D, Kim I S, Chen K S, Marks T J, Lauhon L J, Hersam M C. Gate-Tunable Memristive Phenomena Mediated by Grain Boundaries in Single-Layer MoS2[J]. Nat. Nanotechnol., 2015,10(5):403-406. doi: 10.1038/nnano.2015.56

    15. [15]

      Das S, Gulotty R, Sumant A V, Roelofs A. All Two-Dimensional, Flexible, Transparent, and Thinnest Thin Film Transistor[J]. Nano Lett., 2014,14(5):2861-2866. doi: 10.1021/nl5009037

    16. [16]

      Pawbake A S, Waykar R G, Late D J, Jadkar S R. Highly Transparent Wafer Scale Synthesis of Crystalline WS2 Nanoparticle Thin Film for Photodetector and Humidity Sensing Applications[J]. ACS Appl. Mater. Interfaces, 2016,8(5):3359-3384. doi: 10.1021/acsami.5b11325

    17. [17]

      SHAO Y J, SHEN J, GONG S K, CHEN W, ZHOU J. Resistance Switching Effect of CuInS2 Quantum Dots[J]. Chinese J. Inorg. Chem., 2020,36(11):2093-2099. doi: 10.11862/CJIC.2020.225 

    18. [18]

      Serag M F, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, Tokeshi M, Mizukami H, Bianco A, Baba Y. Trafficking and Subcellular Localization of Multiwalled Carbon Nanotubes in Plant Cells[J]. ACS Nano, 2011,5(1):493-499. doi: 10.1021/nn102344t

    19. [19]

      Zhai Y B, Yang X Q, Wang F, Li Z X, Ding G L, Qiu Z F, Wang Y, Zhou Y, Han S T. Infrared-Sensitive Memory Based on Direct-Grown MoS2-Upconversion-Nanoparticle Heterostructure[J]. Adv. Mater., 2018,30(49)103563.  

    20. [20]

      Sun B, Zhao W X, Liu Y H, Chen P. Resistive Switching Effect of Ag/MoS2/FTO Device[J]. Funct. Mater. Lett., 2015,8(1):50010-50014.  

    21. [21]

      Choi J Y, Yu H C, Lee J J, Jeon J H, Im J H, Jang J H, Jin S W, Kim K K, Cho S H, Chung C M. Preparation of Polyimide/Graphene Oxide Nanocomposite and Its Application to Nonvolatile Resistive Memory Device[J]. Polymers, 2018,10(8)901. doi: 10.3390/polym10080901

    22. [22]

      Bhattacharjee S, Sarkar P K, Prajapat M, Roy A. Electrical Reliability, Multilevel Data Storage and Mechanical Stability of MoS2-PMMA Nanocomposite-Based Non-Volatile Memory Device[J]. J. Phys. D: Appl. Phys., 2017,51(9):1-8.  

    23. [23]

      Rehman M M, Rehman H M M U, Gul J Z, Kim W Y, Karimov K S, Ahmed N. Decade of 2D Materials Based RRAM Devices: A Review[J]. Sci. Technol. Adv. Mater., 2020,173:236-327.  

    24. [24]

      Geng H J, Su Y J, Hao W, Xu M H, Wei L M, Yang Z, Zhang Y F. Controllable Synthesis and Photoelectric Property of Hexagonal SnS2 Nanoflakes by Triton X-100 Assisted Hydrothermal Method[J]. Mater. Lett., 2013,111(10):204-207.  

    25. [25]

      Huang Y, Sutter E, Sadowski J T, Cotlet M, Monti O L, Racke D A, Neupane M R, Wickramaratne D, Lake R K, Parkinson B A, Sutter P. Tin Disulfide-An Emerging Layered Metal Dichalcogenide Semiconductor: Materials Properties and Device Characteristics[J]. ACS Nano, 2014,8(13):10743-10755.  

    26. [26]

      Mu J L, Miao H, Liu E Z, Feng J, Teng F, Zhang D K, Kou Y M, Jin Y P, Fan J, Hu X Y. Enhanced Light Trapping and High Charge Transmission Capacities of Novel Structure for Efficient Photoelec-trochemical Water Splitting[J]. Nanoscale, 2018,10:11881-11893. doi: 10.1039/C8NR03040E

    27. [27]

      Tu F Z, Xu X, Wang P Z, Si L, Zhou X S, Bao J. A Few-Layer SnS2/Reduced Graphene Oxide Sandwich Hybrid for Efficient Sodium Storage[J]. J. Phys. Chem. C, 2017,121:3261-3293. doi: 10.1021/acs.jpcc.6b12692

    28. [28]

      Liu J Z, Xia C X, Li H L, Pan A L. High On/Off Ratio Photosensitive Field Effect Transistors Based on Few Layer SnS2[J]. Nanotechnology, 2016,27(34):1-7.

    29. [29]

      Smith R J, King P J, Lotya M, Wirtz C, Khan U, De S, O'Neill A, Duesberg G S, Grunlan J C, Moriarty G, Chen J, Wang J Z, Minett A I, Nicolosi V, Coleman J N. Large-Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions[J]. Adv. Mater., 2011,23:3944-3948. doi: 10.1002/adma.201102584

    30. [30]

      Deshpande N G, Sagade A A, Gudage Y G, Lokhande C D, Sharma R J. Growth and Characterization of Tin Disulfide (SnS2) Thin Film Deposited by Successive Ionic Layer Adsorption and Reaction (SILAR) Technique[J]. J. Alloys Compd., 2017,436(2):421-426.  

    31. [31]

      Zhang Y C, Zhang F, Yang Z J, Xue H G, Dionysiou D D. Development of a New Efficient Visible-Light-Driven Photocatalyst from SnS2 and Polyvinyl Chloride[J]. J. Catal., 2016,344:692-700. doi: 10.1016/j.jcat.2016.10.022

    32. [32]

      Liu G B, Li Z H, Hasan T, Chen X S, Zheng W, Feng W, Jia D C, Zhou Y, Hu P A. Vertically Aligned Two-Dimensional SnS2 Nanosheets with a Strong Photon Capturing Capability for Efficient Photoelectrochemical Water Splitting[J]. J. Mater. Chem. A, 2017,5(5):1989-1995. doi: 10.1039/C6TA08327G

    33. [33]

      Teng W, Wang Y M, Huang H H, Li X Y, Tang Y B. Enhanced Photoelectrochemical Performance of MoS2 Nanobelts-Loaded TiO2 Nanotube Arrays by Photo-Assisted Electrodeposition[J]. Appl. Surf. Sci., 2017,425(17):507-517.  

    34. [34]

      Takeda N, Parkinson B A. Adsorption Morphology, Light Absorption, and Sensitization Yields for Squaraine Dyes on SnS2 Surfaces[J]. J. Am. Chem. Soc., 2003,125(18):5559-5571. doi: 10.1021/ja0278483

    35. [35]

      Hu X H, Song G S, Li W Y, Peng Y L, Jiang L, Xue Y F, Liu Q, Chen Z G, Hu J Q. Phase-Controlled Synthesis and Photocatalytic Properties of SnS, SnS2 and SnS/SnS2 Heterostructure Nanocrystals[J]. Mater. Res. Bull., 2013,48(6):2325-2332. doi: 10.1016/j.materresbull.2013.02.082

    36. [36]

      Pradhan S K, Xiao B, Mishra S, Killam A, Pradhan A K. Resistive Switching Behavior of Reduced Graphene Oxide Memory Cells for Low Power Nonvolatile Device Application[J]. Sci. Rep., 2016,6:1-9. doi: 10.1038/s41598-016-0001-8

    37. [37]

      Celano U, Goux L, Belmonte A, Opsomer K, Franquet A, Schulze A, Detavernier C, Richard O, Bender H, Jurczak M, Vandervorst W. Three-Dimensional Observation of the Conductive Filament in Nanoscaled Resistive Memory Devices[J]. Nano Lett., 2014,14(5):2401-2406. doi: 10.1021/nl500049g

    38. [38]

      Hou X, Yan X, Liu C S, Ding S J, Zhang D W, Zhou P. Operation Mode Switchable Charge-Trap Memory Based on Few-Layer MoS2[J]. Semicond. Sci. Technol., 2018,33:4001-4013.

    39. [39]

      Yun D Y, Kim T W. Nonvolatile Memory Devices Based on Au/Graphene Oxide Nanocomposites with Bilateral Multilevel Characteristics[J]. Carbon, 2015,88:26-32. doi: 10.1016/j.carbon.2015.02.061

  • 加载中
    1. [1]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    2. [2]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    3. [3]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(11)
  • Abstract views(823)
  • HTML views(219)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return