Citation: Ao XIA, Yue-Peng HAN, Xiao-Xiong ZENG, Chen-Peng ZHAO, Guo-Qiang TAN. Preparation and Lithium Storage Properties of N Doped MnO2/Carbon Cloth Composites[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2175-2184. doi: 10.11862/CJIC.2021.234 shu

Preparation and Lithium Storage Properties of N Doped MnO2/Carbon Cloth Composites

  • Corresponding author: Ao XIA, xiaao@sust.edu.cn
  • Received Date: 22 May 2021
    Revised Date: 2 September 2021

Figures(9)

  • MnO2/CC and N doped MnO2/CC binderless anode materials were prepared by hydrothermal method with carbon cloth (CC) as a flexible substrate, and the structure characterization and electrochemical performance of the materials were tested by means of X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), specific surface area test and galvanostatic charge and discharge. The results showed that N doped MnO2/CC had good rate performance and cycle stability. The first charge specific capacity of N doped MnO2/CC was 948.8 mAh·g-1 at the current density of 0.1 A·g-1, and the reversible specific capacity remained 907.9 mAh·g-1 when the current density returned to 0.1 A·g-1 after different rate tests, and the capacity retention rate was 95.7%. At the high current density of 1 A·g-1, the initial charging specific capacity of N doped MnO2/CC was 640.3 mAh·g-1, the reversible specific capacity still retained 529.9 mAh·g-1 after 100 cycles, and the capacity retention rate was 82.8%. The reversible specific capacity was much higher than that of commercial MnO2.
  • 加载中
    1. [1]

      Li L S, Jacobs R, Gao P, Gan L Y, Wang F, Morgan D, Jin S. Origins of Large Voltage Hysteresis in High Energy-Density Metal Fluoride Lithium-Ion Battery Conversion Electrodes[J]. J. Am. Chem. Soc., 2016,138(8):2838-2848. doi: 10.1021/jacs.6b00061

    2. [2]

      WANG R H, XIAO Z, LI Y, SUN Y L, FAN S T, ZHENG J C, QIAN Z F, HE Z J. Synthesis of Li2FeP2O7 Cathode Material at Different Temperatures and Its Electrochemical Performance for Lithium Ion Batteries[J]. Chem. J. Chinese Universities, 2021,42(4):1299-1306.  

    3. [3]

      ZHOU Z, MA L F, TAN C L. Preparation of Layered (NH4)2V6O16·H2O Nanosheets as an Anode for Li-Ion Batteries[J]. Chem. J. Chinese Universities, 2021,42(2):662-670.  

    4. [4]

      REN T, ZHUANG Q C, HAO Y W, CUI Y L. Influence of Electrochemical Performance of Lithium Ion Batteries with the Adding of LiF and LiCl[J]. Acta Chim. Sinica, 2016,74(10):833-838.  

    5. [5]

      Xu D W, Li B H, Wei C G, He Y B, Du H D, Chu X D, Qin X Y, Yang Q H, Kang F Y. Preparation and Characterization of MnO2/Acid-Treated CNT Nanocomposites for Energy Storage with Zinc Ions[J]. Electrochim. Acta, 2014,133:254-261. doi: 10.1016/j.electacta.2014.04.001

    6. [6]

      Zhang Y, Deng S J, Luo M, Pan G X, Zeng Y X, Lu X H, Ai C Z, Liu Q, Xiong Q Q, Wang X L, Xia X H, Tu J P. Defect Promoted Capacity and Durability of N-MnO2-x Branch Arrays via Low-Temperature NH3 Treatment for Advanced Aqueous Zinc Ion Batteries[J]. Small, 2019,15(47)1905452. doi: 10.1002/smll.201905452

    7. [7]

      Sun L, Xie J, Zhang X X, Zhang L, Wu J, Shao R, Jiang R Y, Jin Z. Controllable Synthesis of Nitrogen-Doped Carbon Nanobubbles to Realize High-Performance Lithium and Sodium Storage[J]. Dalton Trans., 2020,49(44):15712-15717. doi: 10.1039/D0DT03258A

    8. [8]

      He T H, Zeng X S, Rong S P. The Controllable Synthesis of Substitutional and Interstitial Nitrogen-Doped Manganese Dioxide: The Effects of Doping Sites on Enhancing the Catalytic Activity[J]. J. Mater. Chem. A, 2020,8(17):8383-8396. doi: 10.1039/D0TA01346C

    9. [9]

      Hu Z M, Xiao X, Chen C, Li T Q, Huang L, Zhang C F, Su J, Miao L, Jiang J J, Zhang Y R, Zhou J. Al-Doped α-MnO2 for High Mass-Loading Pseudocapacitor with Excellent Cycling Stability[J]. Nano Energy, 2015,11:226-234. doi: 10.1016/j.nanoen.2014.10.015

    10. [10]

      Gao Q, Wang J X, Ke B, Wang J F, Li Y Q. Fe Doped δ-MnO2 Nanoneedles as Advanced Supercapacitor Electrodes[J]. Ceram. Int., 2018,44(15):18770-18775. doi: 10.1016/j.ceramint.2018.07.108

    11. [11]

      Xia A, Zhao C P, Yu W R, Han Y P, Yi J, Tan G Q. Mo-Doped δ-MnO2 Anode Material Synthesis and Electrochemical Performance for Lithium-Ion Batteries[J]. J. Appl. Electrochem., 2020,50(7):733-744. doi: 10.1007/s10800-020-01431-2

    12. [12]

      Radhamani A V, Surendra M K, Rao M S R. Zn Doped δ-MnO2 Nano Flakes: An Efficient Electrode Material for Aqueous and Solid State Asymmetric Supercapacitors[J]. Appl. Surf. Sci., 2018,450:209-218. doi: 10.1016/j.apsusc.2018.04.081

    13. [13]

      Chi H Z, Zhu H J, Gao L H. Boron-Doped MnO2/Carbon Fiber Composite Electrode for Supercapacitor[J]. J. Alloys Compd., 2015,645:199-205. doi: 10.1016/j.jallcom.2015.05.014

    14. [14]

      Kim T W, Park D H, Lim S T, Hwang S J, Min B K, Choy J H. Direct Soft-Chemical Synthesis of Chalcogen-Doped Manganese Oxide 1D Nanostructures: Influence of Chalcogen Doping on Electrode Performance[J]. Small, 2008,4(4):507-514. doi: 10.1002/smll.200700902

    15. [15]

      Wu F F, Gao X B, Xu X L, Jiang Y N, Gao X L, Yin R L, Shi W H, Liu W X, Lu G, Cao X H. MnO2 Nanosheet-Assembled Hollow Polyhedron Grown on Carbon Cloth for Flexible Aqueous Zinc-Ion Batteries[J]. ChemSusChem, 2020,13(6):1537-1545. doi: 10.1002/cssc.201903006

    16. [16]

      Zhong R, Xu M Y, Fu N, Liu R, Zhou A A, Wang X D, Yang Z L. A Flexible High-Performance Symmetric Quasi-Solid supercapacitor Based on Ni-Doped MnO2 Nano-Array@Carbon Cloth[J]. Electrochim. Acta, 2020,348136209. doi: 10.1016/j.electacta.2020.136209

    17. [17]

      Xu M Y, Fu N, Wang X D, Yang Z L. A High Energy Density Flexible Symmetric Supercapacitor Based on Al-Doped MnO2 Nanosheets@Carbon Cloth Electrode Materials[J]. J. Mater. Sci.: Mater. Electron., 2020,31(18):16027-16036. doi: 10.1007/s10854-020-04165-1

    18. [18]

      Shao J X, Zhou H, Zhu M Z, Feng J H, Yuan A H. Carbon Cloth-Supported Fe2O3 Derived from Prussian Blue as Self-Standing Anodes for High-Performance Lithium-Ion Batteries[J]. J. Nanopart. Res., 2019,21(4)79. doi: 10.1007/s11051-019-4518-1

    19. [19]

      Liu M, Xu P P, Wang G X, Yan J F. SnO2 Nanorod Arrays Grown on Carbon Cloth as a Flexible Binder-Free Electrode for High-Performance Lithium Batteries[J]. J. Electron. Mater., 2019,48(12):8206-8211. doi: 10.1007/s11664-019-07667-9

    20. [20]

      Yu H L, Zhu C L, Zhang K, Chen Y J, Li C Y, Gao P, Yang P P, Ouyang Q Y. Three-Dimensional Hierarchical MoS2 Nanoflake Array/Carbon Cloth as High-Performance Flexible Lithium-Ion Battery Anodes[J]. J. Mater. Chem. A, 2014,2(13):4551-4557. doi: 10.1039/C3TA14744D

    21. [21]

      Dong Y, Feng Y Z, Deng J W, He P B, Ma J M. Electrospun Sb2Se3@C Nanofibers with Excellent Lithium Storage Properties[J]. Chin. Chem. Lett., 2020,31(3):909-914. doi: 10.1016/j.cclet.2019.11.039

    22. [22]

      Zou R J, Zhang Z Y, Yuen M F, Sun M L, Hu J Q, Lee C S, Zhang W J. Three-Dimensional-Networked NiCo2S4 Nanosheet Array/Carbon Cloth Anodes for High-Performance Lithium-Ion Batteries[J]. NPG Asia Mater., 2015,7e195. doi: 10.1038/am.2015.63

    23. [23]

      Xia A, Zhao C P, Han Y P, Tan G Q, Ren H J. N-Doped δ-MnO2 Synthesized by the Hydrothermal Method and Its Electrochemical Performance as Anode Materials[J]. Ceram. Int., 2021,47(10):13722-13728. doi: 10.1016/j.ceramint.2021.01.233

    24. [24]

      Chi H Z, Tian S, Hu X S, Qin H Y, Xi J H. Direct Growth of MnO2 on Carbon Fiber Cloth for Electrochemical Capacitor[J]. J. Alloys Compd., 2014,587:354-360. doi: 10.1016/j.jallcom.2013.10.243

    25. [25]

      Jeon H, Jeong J M, Hong S B, Yang M H, Park J, Kim D H, Hwang S Y, Choi B G. Facile and Fast Microwave-Assisted Fabrication of Activated and Porous Carbon Cloth Composites with Graphene and MnO2 for Flexible Asymmetric Supercapacitors[J]. Electrochim. Acta, 2018,280:9-16. doi: 10.1016/j.electacta.2018.05.108

    26. [26]

      Zon N, Nie Q, Zhang X R, Zhang G K, Wang J L, Zhang P Y. Electrothermal Regeneration by Joule Heat Effect on Carbon Cloth Based MnO2 Catalyst for Long-Term Formaldehyde Removal[J]. Chem. Eng. J., 2019,357:1-10. doi: 10.1016/j.cej.2018.09.117

    27. [27]

      Xue Y Y, Li Y F, Luo G W, Shi K, Liu E H, Zhou J S. Using a Dynamic Inhibition Concept to Achieve Content-Controllable Synthesis of N-Coordinated Cu Atoms as Reversible Active Site to-ward Super Li-Ion Capacitors[J]. Adv. Energy Mater., 2020,10(41)2002644. doi: 10.1002/aenm.202002644

    28. [28]

      Yan L J, Shen C, Niu L Y, Liu M C, Liu J H, Chen T Q, Gong Y Y, Li C, Liu X J, Xu S Q. Experimental and Theoretical Investigation of the Effect of Oxygen Vacancies on the Electronic Structure and Pseudocapacitance of MnO2[J]. ChemSusChem, 2019,12(15):3571-3581. doi: 10.1002/cssc.201901015

    29. [29]

      Zhao L M, Wang W J, Zhao H, Wang M, Ge B, Shao X, Li W Z. Controlling Oxygen Vacancies through Gas-Assisted Hydrothermal Method and Improving the Capacitive Properties of MnO2 Nanowires[J]. Appl. Surf. Sci., 2019,491:24-31. doi: 10.1016/j.apsusc.2019.06.074

    30. [30]

      Han Q G, Geng D, Han Z W, Wang F X, Li X, Deng Y S, Zhang J Q, Niu S C, Mu Y N. Preparation of Carbon Cloth Supported Sn Thin Film for Structural Lithium-Ion Battery Anodes[J]. J. Electroanal. Chem., 2018,822:17-22. doi: 10.1016/j.jelechem.2018.05.006

    31. [31]

      Fang X P, Lu X, Guo X W, Mao Y, Hu Y S, Wang J Z, Wang Z X, Wu F, Liu H K, Chen L Q. Electrode Reactions of Manganese Oxides for Secondary Lithium Batteries[J]. Electrochem. Commun., 2010,12(11):1520-1523. doi: 10.1016/j.elecom.2010.08.023

    32. [32]

      Lowe M A, Gao J, Abruna H D. In Operando X-ray Studies of the Conversion Reaction in Mn3O4 Lithium Battery Anodes[J]. J. Mater. Chem. A, 2013,1(6):2094-2103. doi: 10.1039/C2TA01270G

    33. [33]

      Yonekura D, Iwama E, Ota N, Muramatsu M, Saito M, Orikasa Y, Naoi W, Naoi K. Progress of the Conversion Reaction of Mn3O4 Particles as a Function of the Depth of Discharge[J]. Phys. Chem. Chem. Phys., 2014,16(13):6027-6032. doi: 10.1039/c4cp00334a

    34. [34]

      Voskanyan A A, Ho C K, Chan K Y. 3D δ-MnO2 Nanostructure with Ultralarge Mesopores as High-Performance Lithium-Ion Battery Anode Fabricated via Colloidal Solution Combustion Synthesis[J]. J. Power Sources, 2019,421:162-168. doi: 10.1016/j.jpowsour.2019.03.022

    35. [35]

      TANG G A, MAO K, ZHANG J, LYU P, CHENG X Y, WU Q, YANG L J, WANG X Z, HU Z. Hierarchical Nitrogen-Doped Carbon Nanocages as High-Rate Long-Life Cathode Material for Rechargeable Magnesium Batteries[J]. Acta Chim. Sinica, 2020,78(5):444-450.  

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    13. [13]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    14. [14]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    17. [17]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    18. [18]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(5)
  • Abstract views(1233)
  • HTML views(267)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return