Citation: Hong-Nan JIA, Na YAO, Heng-Jiang CONG. Rapid Synthesis of Co-Based Metal-Organic Framework Nanoparticle at Room Temperature for Efficient Oxygen Evolution Reaction[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 2011-2019. doi: 10.11862/CJIC.2021.233 shu

Rapid Synthesis of Co-Based Metal-Organic Framework Nanoparticle at Room Temperature for Efficient Oxygen Evolution Reaction

  • Corresponding author: Heng-Jiang CONG, conghj@whu.edu.cn
  • Received Date: 1 May 2021
    Revised Date: 8 September 2021

Figures(8)

  • A fast and mild method was developed to prepare Co-MOF-74 nanoparticles with high crystallinity and uniform morphology at room temperature for efficient oxygen evolution reaction (OER) in alkaline media. Compared with the conventional hydrothermal route, the time required for synthesis was greatly reduced after introducing triethylamine: Co-MOF-74 nanoparticles (about 20 nm) could be readily available by stirring at room temperature for only 2 h. The nano-electrocatalyst exhibited a larger specific surface area (760 m2·g-1), excellent activities and stability for OER with an overpotential of 275 mV to achieve a current density of 10 mA·cm-2.
  • 加载中
    1. [1]

      Turner J A. Sustainable Hydrogen Production[J]. Science, 2004,305(5686):972-974. doi: 10.1126/science.1103197

    2. [2]

      Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles[J]. Science, 2011,334(6061):1383-1385. doi: 10.1126/science.1212858

    3. [3]

      Katsounaros L, Cherevko S, Zeradjanin A R, Mayrhofer K J J. Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion[J]. Angew. Chem. Int. Ed., 2014,53(1):102-121. doi: 10.1002/anie.201306588

    4. [4]

      Zheng Y, Jiao Y, Vasileff A, Qiao S Z. Angew. Chem. Int. Ed., 2018, 57(26): 7568-7579  doi: 10.1002/anie.201710556

    5. [5]

      Liu T, Li P, Yao N, Cheng G Z, Chen S L, Luo W, Yin Y D. CoP-Doped MOF-Based Electrocatalyst for pH-Universal Hydrogen Evolution Reaction[J]. Angew. Chem. Int. Ed., 2019,58(14):4679-4684. doi: 10.1002/anie.201901409

    6. [6]

      Sun H M, Yan Z H, Liu F M, Xu W C, Cheng F Y, Chen J. Self-Supported Transition-Metal-Based Electrocatalysts for Hydrogen and Oxygen Evolution[J]. Adv. Mater., 2020,32(3)1806326. doi: 10.1002/adma.201806326

    7. [7]

      Yao N, Li P, Zhou Z R, Zhao Y M, Cheng G Z, Luo W. Synergistically Tuning Water and Hydrogen Binding Abilities over Co4N by Cr Doping for Exceptional Alkaline Hydrogen Evolution Electrocatalysis[J]. Adv. Energy Mater., 2019,9(41)1902449. doi: 10.1002/aenm.201902449

    8. [8]

      Chen G, Wan H, Ma W, Zhang N, Cao Y J, Liu X H, Wang J, Ma R Z. Layered Metal Hydroxides and Their Derivatives: Controllable Synthesis, Chemical Exfoliation, and Electrocatalytic Applications[J]. Adv. Energy Mater., 2020,10(11)1902535. doi: 10.1002/aenm.201902535

    9. [9]

      LIU G Q. Preparation and Electrocatalytic Activities for Oxygen Evolution Reaction of CoB x/Co3O4 Catalyst[J]. Chinese J. Inorg. Chem., 2021,37(2):267-275.  

    10. [10]

      Wang H L, Zhu Q L, Z ou, R Q, Xu Q. Metal-Organic Frameworks for Energy Applications[J]. Chem, 2017,2(1):52-80. doi: 10.1016/j.chempr.2016.12.002

    11. [11]

      Xia Q C, Li Z J, Tan C X, Liu Y, Gong W, Cui Y. Multivariate Metal-Organic Frameworks as Multifunctional Heterogeneous Asymmetric Catalysts for Sequential Reactions[J]. J. Am. Chem. Soc., 2017,139(24):8259-8266. doi: 10.1021/jacs.7b03113

    12. [12]

      XU W Y, LI S Y, WANG Y, CHENG Y B, SHEN M S, HU L, GUO Z R, LIAO M Y, PENG J X, CHEN X. Disproportionation Mechanism of Methylchlorosilanes Confinement Catalysis by MIL-53(Al)[J]. Chinese J. Inorg. Chem., 2021,37(4):615-622.  

    13. [13]

      Deng H X, Doonan C J, Furukawa H, Ferreira R B, Towne J, Knobler C B, Wang B, Yaghi O M. Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks[J]. Science, 2010,327(5967):846-850. doi: 10.1126/science.1181761

    14. [14]

      Li B, Wen H M, Wang H L, Wu H, Yildirim T, Zhou W, Chen B L. Porous Metal-Organic Frameworks with Lewis Basic Nitrogen Sites for High-Capacity Methane Storage[J]. Energy Environ. Sci., 2015,8(8):2504-2511. doi: 10.1039/C5EE01531F

    15. [15]

      Zhang Y B, Furukawa H, Ko N, Nie W X, Park H J, Okajima S, Cordova K E, Deng H X, Kim J, Yaghi O M. Introduction of Functionality, Selection of Topology, and Enhancement of Gas Adsorption in Multivariate Metal-Organic Framework-177[J]. Am. Chem. Soc., 2015,137(7):2641-2650. doi: 10.1021/ja512311a

    16. [16]

      Zhao S L, Wang Y, Dong J C, He C T, Yin H J, An P F, Zhao K, Zhang X F, Gao C, Zhang L J, Lv J W, Wang J X, Zhang J Q, Khattak A M, Khan N A, Wei Z X, Zhang J, Liu S Q, Zhao H J, Tang Z Y. Ultrathin Metal-Organic Framework Nanosheets for Electrocatalytic Oxygen Evolution[J]. Nat. Energy, 2016,116184. doi: 10.1038/nenergy.2016.184

    17. [17]

      Lu X F, Liao P Q, Wang J W, Wu J X, Chen X W, He C T, Zhang J P, Li G R, Chen X M. An Alkaline-Stable, Metal Hydroxide Mimicking Metal-Organic Framework for Efficient Electrocatalytic Oxygen Evolution[J]. J. Am. Chem. Soc., 2016,138(27):8336-8339. doi: 10.1021/jacs.6b03125

    18. [18]

      Shen J Q, Liao P Q, Zhou D D, He C T, Wu J X, Zhang W X, Zhang J P, Chen X M. Modular and Stepwise Synthesis of a Hybrid Metal-Organic Framework for Efficient Electrocatalytic Oxygen Evolution[J]. J. Am. Chem. Soc., 2017,139(5):1778-1781. doi: 10.1021/jacs.6b12353

    19. [19]

      Shen K, Zhang L, Chen X D, Liu L M, Zhang D L, Han Y, Chen J Y, Long J L, Luque R, Li Y W, Chen B L. Ordered Macro-Microporous Metal-Organic Framework Single Crystals[J]. Science, 2018,359(6372):206-210. doi: 10.1126/science.aao3403

    20. [20]

      Xu X B, Zhang Z C, Wang X. Well-Defined Metal-Organic-Framework Hollow Nanostructures for Catalytic Reactions Involving Gases[J]. Adv. Mater., 2015,27(36):5365-5371. doi: 10.1002/adma.201500789

    21. [21]

      Zhang Z C, Chen Y F, Xu X B, Zhang J C, Xiang G L, He W, Wang X. Well-Defined Metal-Organic Framework Hollow Nanocages[J]. Chem. Int. Ed., 2014,53(2):429-433. doi: 10.1002/anie.201308589

    22. [22]

      Kaminker R, Popovitz-Biro R, van der Boom M E. Coordination-Polymer Nanotubes and Spheres: A Ligand-Structure Effect[J]. Angew. Chem., 2011,123(14):3282-3284. doi: 10.1002/ange.201008193

    23. [23]

      Zou L L, Hou C C, Liu Z, Pang H, Xu Q. Superlong Single-Crystal Metal-Organic Framework Nanotubes[J]. J. Am. Chem. Soc., 2018,140(45):15393-15401. doi: 10.1021/jacs.8b09092

    24. [24]

      Rosi N L, Kim J, Eddaoudi M, Chen B L, O'Keeffe M, Yaghi O M. Rod Packings and Metal-Organic Frameworks Constructed from Rod-Shaped Secondary Building Units[J]. J. Am. Chem. Soc., 2005,127(5):1504-1518. doi: 10.1021/ja045123o

    25. [25]

      Deng H X, Grunder S, Cordova K E, Valente C, Furukawa H, Hmadeh M, Gándara F, Whalley A C, Liu Z, Asahina S, Kazumori H, O'Keeffe M, Terasaki O, Stoddart J F, Yaghi O M. Large-Pore Apertures in a Series of Metal-Organic Frameworks[J]. Science, 2012,336(6084):1018-1023. doi: 10.1126/science.1220131

    26. [26]

      Caskey S R, Wong-Foy A G, Matzger A J. Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores[J]. J. Am. Chem. Soc., 2008,130(33):10870-10871. doi: 10.1021/ja8036096

    27. [27]

      Wang X L, Xiao H, Li A, Li Z, Liu S J, Zhang Q H, Gong Y, Zheng L R, Zhu Y Q, Chen C, Wang D S, Peng Q, Gu L, Han X D, Li J, Li Y D. Constructing NiCo/Fe3O4 Heteroparticles within MOF-74 for Efficient Oxygen Evolution Reactions[J]. J. Am. Chem. Soc., 2018,140(45):15336-15341. doi: 10.1021/jacs.8b08744

    28. [28]

      Zhao S L, Tan C H, He C T, An P F, Xie F, Jiang S, Zhu Y F, Wu K H, Zhang B W, Li H J, Zhang J, Chen Y, Liu S Q, Dong J C, Tang Z Y. Structural Transformation of Highly Active Metal-Organic Framework Electrocatalysts during the Oxygen Evolution Reaction[J]. Nat. Energy, 2020,5:881-890. doi: 10.1038/s41560-020-00709-1

    29. [29]

      Yao N, Fan Z Y, Meng R, Jia H N, Luo W. A Cobalt Hydroxide Coated Metal-Organic Framework for Enhanced Water Oxidation Electrocatalysis[J]. Chem. Eng. J., 2021,408127319. doi: 10.1016/j.cej.2020.127319

    30. [30]

      Guo Y, Chen S, Li Y, Wang Y W, Zou H B, Tong X L. Pore Structure Dependent Activity and Durability of Mesoporous Rhodium Nanoparticles towards the Methanol Oxidation Reaction[J]. Chem. Commun., 2020,56(32):4448-4451. doi: 10.1039/D0CC01228A

    31. [31]

      Qin X, Sun Y X, Wang N X, Wei Q, Xie L H, Xie Y B, Lia J R. Nanostructure Array Assisted Aggregation-Based Growth of a Co-MOF-74 Membrane on a Ni-foam Substrate for Gas Separation[J]. RSC Adv., 2016,6(96):94177-94183. doi: 10.1039/C6RA21320K

    32. [32]

      Peng S, Bie B L, Sun Y Z S, Liu M, Cong H J, Zhou W T, Xia Y C, Tang H, Deng H X, Zhou X. Metal-Organic Frameworks for Precise Inclusion of Single-Stranded DNA and Transfection in Immune Cells[J]. Nat. Commun., 2018,91293. doi: 10.1038/s41467-018-03650-w

    33. [33]

      Miner E M, Fukushima T, Sheberla D, Sun L, Surendranath Y, Dincă M. Electrochemical Oxygen Reduction Catalysed by Ni3(hexaiminotriphenylene)2[J]. Nat. Commun., 2016,710942. doi: 10.1038/ncomms10942

    34. [34]

      Liu G Q, Sun Z T, Zhang X, Wang H J, Wang G Z, Wu X J, Zhang H M, Zhao H J. Vapor-phase Hydrothermal Transformation of a Nanosheet Array Structure Ni(OH)2 into Ultrathin Ni3S2 Nanosheets on Nickel Foam for High-Efficiency Overall Water Splitting[J]. J. Mater. Chem. A, 2018,6(39):19201-19209. doi: 10.1039/C8TA07162D

    35. [35]

      Zhang C X, Liu H X, He J, Hu G Z, Bao H H, Lü F, Zhuo L C, Ren J Q, Liu X J, Luo J. Boosting Hydrogen Evolution Activity of Vanadyl Pyrophosphate Nanosheets for Electrocatalytic Overall Water Splitting[J]. Chem. Commun., 2019,55(71):10511-10514. doi: 10.1039/C9CC04481G

    36. [36]

      Yu F, Zhou H Q, Huang Y F, Sun J Y, Qin F, Bao J M, Goddard III W A, Chen S, Ren Z F. High-Performance Bifunctional Porous NonNoble Metal Phosphide Catalyst for Overall Water Splitting[J]. Nat. Commun., 2018,92551. doi: 10.1038/s41467-018-04746-z

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    11. [11]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

Metrics
  • PDF Downloads(55)
  • Abstract views(2159)
  • HTML views(1001)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return