Citation: Ding-Qi XIONG, Peng-Kui FU, Yu-Yan LI, Xiao-Yu ZHANG, Qing-Lin YANG, Mei-Mei JIA, Yan-Yan ZHU, Xiu-Yan DONG. Synthesis, Structure Regulation and Characterization of Cadmium(Ⅱ) Complexes Based on Imidazole Carboxylic Acid Ligands[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 2079-2091. doi: 10.11862/CJIC.2021.231 shu

Synthesis, Structure Regulation and Characterization of Cadmium(Ⅱ) Complexes Based on Imidazole Carboxylic Acid Ligands

  • Corresponding author: Xiu-Yan DONG, dxy568@163.com
  • Received Date: 3 April 2021
    Revised Date: 31 August 2021

Figures(10)

  • Two new cadmium(Ⅱ) complexes were synthesized by hydrothermal method with 2-(4-carboxy-phenyl)-imidazole-4, 5-dicarboxylic acid (H3L) through the auxiliary ligands 1, 10-phenanthroline(1, 10-phen) and 1, 4-bis(1-imidazolyl) benzene(dib) coordination regulation effect, [Cd2(HL)2(1, 10-phen)2(H2O)2] (1) and {[Cd(HL)(dib)0.5(H2O)2]·2H2O}n (2). 1 and 2 were analyzed and characterized by single crystal X-ray diffraction, element analysis, thermo-gravimetric analysis, powder X-ray diffraction, infrared spectroscopy, Hirshfeld surface analysis, and density functional theory quantification calculations. Single crystal X-ray diffraction shows that 1 and 2 belong to the triclinic system and the P1 space group, and 1 forms a zero-dimensional structure, 2 forms a one-dimensional chain structure.
  • 加载中
    1. [1]

      Li Y L, Jin T, Ma G, Li Y C, Fan L Z, Li X H. Metal-Organic Framework Assisted and In-Situ Synthesis of Hollow CdS Nanostructures with High-Efficient Photocatalytic Hydrogen Evolution[J]. Dalton Trans., 2019,48(17):5649-5655. doi: 10.1039/C9DT00603F

    2. [2]

      Lu W G, Wei Z W, Gu Z Y, Liu T F, Park J, Park J, Tian J, Zhang M W, Zhang Q, Gentle T, Bosch M, Zhou H C. Tuning the Structure and Function of Metal-Organic Frameworks via Linker Design[J]. Chem. Soc. Rev., 2014,43(16):5561-5593. doi: 10.1039/C4CS00003J

    3. [3]

      Li N, Feng R, Zhu J, Chang Z, Bu X H. Conformation Versatility of Ligands in Coordination Polymers: From Structural Diversity to Properties and Applications[J]. Coord. Chem. Rev., 2018,375:558-586. doi: 10.1016/j.ccr.2018.05.016

    4. [4]

      Hönicke I M, Senkovska I, Bon V, Baburin I A, Bönisch N, Raschke S, Evans J D, Kaskel S. Balancing Mechanical Stability and Ultrahigh Porosity in Crystalline Framework Materials[J]. Angew. Chem. Int. Ed., 2018,57(42):13780-13783. doi: 10.1002/anie.201808240

    5. [5]

      Yuan J Q, Li J T, Che S T, Li G H, Liu X Y, Sun X D, Zou L F, Zhang L R, Liu Y L. Two Unique Copper Cluster-Based Metal-Organic Frameworks with High Performance for CO2 Adsorption and Separation[J]. Inorg. Chem. Front., 2019,6(2):556-561. doi: 10.1039/C8QI01315B

    6. [6]

      Cui Y J, Zhang J, He H J, Qian G D. Photonic Functional Metal-Organic Frameworks[J]. Chem. Soc. Rev., 2018,47(15):5740-5785. doi: 10.1039/C7CS00879A

    7. [7]

      An X X, Zhao Q, Mu H R, Dong W K. A New Half-Salamo-Based Homo-Trinuclear Nickel (Ⅱ) Complex: Crystal Structure, Hirshfeld Surface Analysis, and Fluorescence Properties[J]. Crystals, 2019,9(2)101. doi: 10.3390/cryst9020101

    8. [8]

      Dong X Y, Si C D, Fan Y, Hu D C, Yao X Q, Yang Y X, Liu J C. Effect of N-Donor Ligands and Metal Ions on the Coordination Polymers Based on a Semirigid Carboxylic Acid Ligand: Structures Analysis, Magnetic Properties, and Photoluminescence[J]. Cryst. Growth Des., 2016,16(4):2062-2073. doi: 10.1021/acs.cgd.5b01734

    9. [9]

      Chand S, Pal S C, Mondal M, Hota S, Pal A, Sahoo R, Das M C. 3D Co (Ⅱ)-MOFs with Varying Porosity and Open Metal Sites toward Multipurpose Heterogeneous Catalysis under Mild Conditions[J]. Cryst. Growth Des., 2019,19(9):5343-5353. doi: 10.1021/acs.cgd.9b00823

    10. [10]

      Liu G F, Qiao X X, Cai Y L, Xu J Y, Yan Y, Karadeniz B, Lü J, Cao R. Aluminum Metal-Organic Framework-Silver Nanoparticle Composites for Catalytic Reduction of Nitrophenols[J]. ACS Appl. Nano Mater., 2020,3(11):11426-11433. doi: 10.1021/acsanm.0c02516

    11. [11]

      Zhang H, Gao X W, Wang L, Zhao X S, Li Q Y, Wang X J. Microwave-Assisted Synthesis of Urea-Containing Zirconium Metal-Organic Framework for Heterogeneous Catalysis of Henry Reactions[J]. CrystEngComm, 2019,21(9):1358-1362. doi: 10.1039/C8CE02153H

    12. [12]

      Zhang M Y, Dai R D, Li B J, Hang T X, Xie J X, Lü J, Zhu X D. A Fluorescent Metal-Organic Framework Constructed from Semi-rigid Ligand for the Sensitive Sensing of 2, 4, 6-Trinitrophenol[J]. Cryst. Growth Des., 2020,20(3):1373-1377. doi: 10.1021/acs.cgd.9b01379

    13. [13]

      Hou X M, Yan C C, Xu X L, Liang A Q, Song Z W, Tang S F. Two-Dimensional Layered Lanthanide Diphosphonates: Synthesis, Structures and Sensing Properties toward Fe3+ and Cr2O72-[J]. Dalton Trans., 2020,49(12):3809-3815. doi: 10.1039/C9DT03531A

    14. [14]

      Dong W K, Sunday F A, Zhang Y, Sun Y X, Dong X Y. A Reversible "Turn-On" Fluorescent Sensor for Selective Detection of Zn2+[J]. Sens. Actuators B, 2017,238:723-734. doi: 10.1016/j.snb.2016.07.047

    15. [15]

      Zhang X Y, Yang Q L, Yun M, Si C D, An N, Jia M M, Liu J C, Dong X Y. Seven New Metal-Organic Frameworks Assembled from Semi-rigid Polycarboxylate and Auxiliary N-Donor Ligands: Syntheses, Structures and Properties[J]. Acta Crystallogr. Sect. B, 2020,76:1001-1017. doi: 10.1107/S2052520620012834

    16. [16]

      Fuller R O, Koutsantonis G A, Ogden M I. Magnetic Properties of Calixarene-Supported Metal Coordination Clusters[J]. Coord. Chem. Rev., 2020,402213066. doi: 10.1016/j.ccr.2019.213066

    17. [17]

      Dhers S, Wilson R K, Rouzieres M, Clérac R, Brooker S. A One-Dimensional Coordination Polymer Assembled from a Macrocyclic Mn (Ⅲ)Single-Molecule Magnet and Terephthalate[J]. Cryst. Growth Des., 2020,20(3):1538-1542. doi: 10.1021/acs.cgd.9b01269

    18. [18]

      Navarro Y, Guedes G P, Cano J, Ocón P, Iglesias M J, Lloret F, López-Ortiz F. Synthesis, Structural Characterization and Electro-chemical and Magnetic Studies of M(hfac)2(M=Cu, Co) and Nd (hfac)3 Complexes of 4-Amino-TEMPO[J]. Dalton Trans., 2020,49(19):6280-6294. doi: 10.1039/D0DT00541J

    19. [19]

      Wang T, Lin E, Peng Y L, Chen Y, Cheng P, Zhang Z J. Rational Design and Synthesis of Ultramicroporous Metal-Organic Frameworks for Gas Separation[J]. Coord. Chem. Rev., 2020,423213485. doi: 10.1016/j.ccr.2020.213485

    20. [20]

      Wang Y, Jia X X, Yang H J, Wang Y X, Chen X T, Hong A N, Li J P, Bu X H, Feng P Y. A Strategy for Constructing Pore-Space-Partitioned MOFs with High Uptake Capacity for C2 Hydrocarbons and CO2[J]. Angew. Chem. Int. Ed., 2020,59(43):19027-19030. doi: 10.1002/anie.202008696

    21. [21]

      Li X Y, Li Y Z, Ma L N, Hou L, He C Z, Wang Y Y, Zhu Z H. Efficient Gas and Alcohols Uptake and Separation Driven by Two Types of Channels in a Porous MOF: Experimental and Theoretical Investigation[J]. J. Mater. Chem. A, 2020,8(10):5227-5233. doi: 10.1039/C9TA13322D

    22. [22]

      Pinto R V, Wang S J, Tavares S R, Pires J, Antunes F, Vimont A, Clet G, Daturi M, Maurin G, Serre C, Pinto M L. Tuning Cellular Biological Functions Through the Controlled Release of NO from a Porous Ti-MOF[J]. Angew. Chem. Int. Ed., 2020,59(13):5135-5143. doi: 10.1002/anie.201913135

    23. [23]

      Yuan G, Zhang C, Xu D J, Shao K Z, Li X M, Hao X R, Su Z M. Four d10 Metal Coordination Polymers Based on 2-(4-Carboxyphenyl)-1H-imidazole-4, 5-dicarboxylic Acid and Auxiliary N-Containing Ligands: Syntheses, Structures, Photoluminescence and Sensing Properties[J]. Polyhedron, 2020,180114430. doi: 10.1016/j.poly.2020.114430

    24. [24]

      Zhang X T, Chen H T, Li B, Liu G Z, Liu X Z. Assembly of a Series of Coordination Polymers Built from Rigid Tetracarboxylate Ligand and Flexible Bis(imidazole) Linker: Syntheses, Structural Diversities, Luminescence Sensing, and Photocatalytic Properties[J]. Dalton Trans., 2018,47(4):1202-1213. doi: 10.1039/C7DT03761A

    25. [25]

      Sun Z L, Yu S H, Zhao L L, Wang J F, Li Z F, Li G. A Highly Stable Two-Dimensional Copper(Ⅱ) Organic Framework for Proton Conduction and Ammonia Impedance Sensing[J]. Chem. Eur. J., 2018,24(42):10829-10839. doi: 10.1002/chem.201801844

    26. [26]

      Mao N N, Zhang B Q, Yu F, Chen X, Zhuang G L, Wang Z X, Ouyang Z W, Zhang T L, Li B. Embedding 1D or 2D Cobalt-Carboxylate Substrates in 3D Coordination Polymers Exhibiting Slow Magnetic Relaxation Behaviors: Crystal Structures, High-Field EPR, and Magnetic Studies[J]. Dalton Trans., 2017,46(14):4786-4795. doi: 10.1039/C7DT00168A

    27. [27]

      Lebedev A V, Lebedeva A B, Sheludyakov V D, Kovaleva E A, Ustinnova O L, Shatunov V V. Synthesis and N-Alkylation of 2-Alkyl and 2-Arylimidazole-4, 5-dicarboxylic Acid Esters[J]. Russ. J. Gen. Chem., 2007,77(5):949-953. doi: 10.1134/S1070363207050234

    28. [28]

      Sharghi H, Aberi M, Doroodmand M M. One-Pot Synthesis of 2-Arylbenzimidazole, 2-Arylbenzothiazole and 2-Arylbenzoxazole Derivatives Using Vanadium(Ⅳ)-Salen Complex as Homogeneous Catalyst and Vanadium(Ⅳ)-Salen Complex Nanoparticles Immobilized onto Silica as a Heterogeneous Nanocatalyst[J]. J. Iran. Chem. Soc., 2012,9:189-204. doi: 10.1007/s13738-011-0045-4

    29. [29]

      Sheldrick G M. Crystal Structure Refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.  

    30. [30]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2:A Complete Structure Solution, Refinement and Analysis Program[J]. J. Appl. Cryst., 2009,42:339-341. doi: 10.1107/S0021889808042726

    31. [31]

      Bourhis L J, Dolomanov O V, Gildea R J, Howard J A K, Puschmann H. The Anatomy of a Comprehensive Constrained, Restrained Refinement Program for the Modern Computing Environment-Olex2 Dissected[J]. Acta Crystallogr. Sect. A, 2015,A71:59-75.

    32. [32]

      Barbieri A, Accorsi G, Armaroli N. Luminescent Complexes beyond the Platinum Group: the d10 Avenue[J]. Chem. Commun., 2008(19):2185-2193. doi: 10.1039/b716650h

    33. [33]

      Zhang X T, Fan L M, Sun Z, Zhang W, Li D C, Dou J M, Han L. Syntheses, Structures, and Properties of a Series of Multidimensional Metal-Organic Polymers Based on 3, 3', 5, 5'-Biphenyltetracarboxylic Acid and N-Donor Ancillary Ligands[J]. Cryst. Growth Des., 2013,13(2):792-803. doi: 10.1021/cg301502u

    34. [34]

      Mao S S, Han X T, Li C, Huang G Z, Shen K S, Shi X K, Wu H L. Synthesis, Crystal Structure, Fluorescence and Electrochemical Properties of Two Ag(Ⅰ) Complexes Based on 2-(4'-Pyridyl)-benzoxazole/SPPh3 Ligands[J]. J. Coord. Chem., 2018,71(20):3330-3341. doi: 10.1080/00958972.2018.1514116

    35. [35]

      Wu Y L, Yang G P, Zhang Y D, Shi N N, Han J, Wang Y Y. New Luminescent Cd (Ⅱ)-MOF as Highly Selective Chemical Probe for Fe3+ in Aqueous Solution with Mixed Metal Ions[J]. RSC Adv., 2015,5(110):90772-90777. doi: 10.1039/C5RA18807E

    36. [36]

      Zhang L Y, Zhang J P, Lin Y Y, Chen X M. Syntheses, Structures, and Photoluminescence of Three Coordination Polymers of Cadmium Dicarboxylates[J]. Cryst. Growth Des., 2006,6(7):1684-1689. doi: 10.1021/cg060194f

    37. [37]

      Yan T, Zhou J, Zhu R R, Zhao Y R, Xue Z, Jia L, Wang Q, Du L, Zhao Q H. Two-Dimensional Excitonic Metal-Organic Framework: Design, Synthesis, Regulation, and Properties[J]. Inorg. Chem., 2019,58(5):3145-3155. doi: 10.1021/acs.inorgchem.8b03210

    38. [38]

      Pietrzak A, Modranka J, Wojciechowski J, Janecki T, Wolf W M. Topology of Ladder Supramolecular Assemblies in Azaheterocyclic Phosphonates. A Structural and Computational Approach[J]. Cryst. Growth Des., 2018,18(1):200-209. doi: 10.1021/acs.cgd.7b01087

    39. [39]

      Wang D W, Wang T, Du L, Zhou J, Yan T, Zhao Q H. Four Supramolecular Transition Metal (Ⅱ) Complexes Based on Triazole-Benzoic Acid Derivatives: Crystal Structure, Hirshfeld Surface Analysis, and Spectroscopic and Thermal Properties[J]. Struct. Chem., 2018,29:1013-1023. doi: 10.1007/s11224-018-1084-6

    40. [40]

      Chai L Q, Hu Q, Zhang K Y, Zhou L, Huang J J. Synthesis, Structural Characterization, Spectroscopic, and DFT Studies of Two Pentacoordinated Zinc (Ⅱ) Complexes Containing Quinazoline and 1, 10-Phenanthroline as Mixed Ligands[J]. J. Lumin., 2018,203:234-246. doi: 10.1016/j.jlumin.2018.06.058

    41. [41]

      Sen P, Mpeta L S, Mack J, Nyokong T. New Difluoroboron Complexes Based on N, O -Chelated Schiff Base Ligands: Synthesis, Characterization, DFT Calculations and Photophysical and Electrochemical Properties[J]. J. Lumin., 2020,224117262. doi: 10.1016/j.jlumin.2020.117262

    42. [42]

      Zhang Z S, Zhang K Y, Chen L C, Li Y X, Chai L Q. Crystal Structure, Spectral Property, Antimicrobial Activity and DFT Calculation of N-(Coumarin-3-yl)-N'-(2-amino-5-phenyl-1, 3, 4-thiadiazol-2-yl) Urea[J]. J. Mol. Struct., 2017,1145:32-42. doi: 10.1016/j.molstruc.2017.05.078

    43. [43]

      Cai Y Y, Xu L Y, Chai L Q, Li Y X. Synthesis, Crystal Structure, TD/DFT Calculations and Hirshfeld Surface Analysis of 1-(4-((Benzo) dioxol-5-ylmethyleneamino) phenyl) Ethanone Oxime[J]. J. Mol. Struct., 2020,1204127552. doi: 10.1016/j.molstruc.2019.127552

    44. [44]

      Guo J, Yang J, Liu Y Y, Ma J F. Two Novel 3D Metal-Organic Frameworks Based on Two Tetrahedral Ligands: Syntheses, Structures, Photoluminescence and Photocatalytic Properties[J]. CrystEngComm, 2012,14(20):6609-6617. doi: 10.1039/c2ce25588j

    45. [45]

      Du P, Yang Y, Yang J, Liu B K, Ma J F. Syntheses, Structures, Photoluminescence, Photocatalysis, and Photoelectronic Effects of 3D Mixed High-Connected Metal-Organic Frameworks Based on Octanuclear and Dodecanuclear Secondary Building Units[J]. Dalton Trans., 2013,42:1567-1580. doi: 10.1039/C2DT31964K

    46. [46]

      DING Q H, LIU Y Y, LI L C, HUANG Y Q, ZHAO Y. Syntheses, Structures and Optical Band Gaps of Three Zn(Ⅱ)/Co(Ⅱ) Coordination Polymers[J]. Chinese J. Inorg. Chem., 2020,36(11):2014-2022. doi: 10.11862/CJIC.2020.245 

    47. [47]

      WANG Y B, YU M, ZHANG Y, SU Q, DONG W K. Syntheses, Crystal Structures, Hirshfeld Surfaces Analyses and Fluorescence Properties of Two Tetranuclear Nickel (Ⅱ) and Zinc (Ⅱ) Complexes Based on an Unsymmetrical Salamo-like N2O4-Donor Ligand[J]. Chinese J. Inorg. Chem., 2020,36(10):1967-1976. doi: 10.11862/CJIC.2020.215 

  • 加载中
    1. [1]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    4. [4]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    5. [5]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    6. [6]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    7. [7]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    8. [8]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    9. [9]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    10. [10]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    11. [11]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    12. [12]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    13. [13]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    14. [14]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    15. [15]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    16. [16]

      Shuaiwen LiZihui ChenFeng YangWanqing Yue . The age of vanadium-based nanozymes: Synthesis, catalytic mechanisms, regulation and biomedical applications. Chinese Chemical Letters, 2024, 35(4): 108793-. doi: 10.1016/j.cclet.2023.108793

    17. [17]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    18. [18]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    19. [19]

      Bohan ZhangBingzhe WangGuichuan XingZikang TangSongnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358

    20. [20]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

Metrics
  • PDF Downloads(14)
  • Abstract views(788)
  • HTML views(167)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return