Citation: Xue CUI, Yu-Ping ZHANG, Tian GUI, Ming-Liang HE, Fei ZHANG, Na HU, Yu-Qin LI, Xiang-Shu CHEN. Difunctional Effects of Organo-Modified T-Type Zeolite Membranes for Dewatering from Organic Solution[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 2068-2078. doi: 10.11862/CJIC.2021.228 shu

Difunctional Effects of Organo-Modified T-Type Zeolite Membranes for Dewatering from Organic Solution

Figures(10)

  • 3-aminopropyltriethoxysilane (APTES) was introduced to modify the surface of T-type zeolite membranes. Characterizations, such as X-ray diffraction, field-emission scanning electron microscopy, X-ray photoelectron spectroscopy and FT-IR, demonstrated that APTES was successfully modified on the membrane surface by chemical bonding. The modified APTES plays two roles: one is to improve the membrane hydrophilicity and the other is to reduce the defects of membrane layer. The modified membranes showed a high separation factor and water flux for the dewatering of a 90% isopropyl alcohol solution at 348 K. This method showed good reproducibility, and five modified membranes demonstrated an increased separation factor by about 8 times (from 359±23 to 2 934±183), and a slightly decreased total flux from (3.52±0.10) kg·m-2·h-1 to (3.06±0.14) kg·m-2·h-1 (a decrease of 13.07%). At 363 K, during 100 h of continuous testing, the modified membrane was very stable, and the permeation side retained a high-water content above 99.50% with a feed solution of 90% isopropyl alcohol.
  • 加载中
    1. [1]

      Morigami Y, Kondo M, Abe J, Kita H, Okamoto K. The First Large-Scale Pervaporation Plant Using Tubular-Type Module with Zeolite NaA Membrane[J]. Sep. Purif. Technol., 2001,25(1/2/3):251-260.  

    2. [2]

      Van Der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R. A Review of Pressure-Driven Membrane Processes in Wastewater Treatment and Drinking Water Production[J]. Environ. Prog., 2003,22(1):46-56. doi: 10.1002/ep.670220116

    3. [3]

      Koros W J, Fleming G K. Membrane-Based Gas Separation[J]. J. Membr. Sci., 1993,83(1):1-80. doi: 10.1016/0376-7388(93)80013-N

    4. [4]

      Kosinov N, Gascon J, Kapteijn F, Hensen E J M. Recent Developments in Zeolite Membranes for Gas Separation[J]. J. Membr. Sci., 2016,499:65-79. doi: 10.1016/j.memsci.2015.10.049

    5. [5]

      Caro J, Noack M, Kölsch P, Schäfer R. Zeolite Membranes-State of Their Development and Perspective[J]. Microporous Mesoporous Mater., 2000,38(1):3-24. doi: 10.1016/S1387-1811(99)00295-4

    6. [6]

      Wang S W, Li X Q, Wu H, Tian Z Z, Xin Q P, He G W, Peng D D, Chen S L, Yin Y, Jiang Z Y, Guiver M D. Advances in High Permeability Polymer-Based Membrane Materials for CO2 Separations[J]. Energy Environ. Sci., 2016,9(6):1863-1890. doi: 10.1039/C6EE00811A

    7. [7]

      Qiu S L, Xue M, Zhu G S. Metal-Organic Framework Membranes: From Synthesis to Separation Application[J]. Chem. Soc. Rev., 2014,43(16):6116-6140. doi: 10.1039/C4CS00159A

    8. [8]

      Shah M, McCarthy M C, Sachdeva S. Current Status of Metal-Organic Framework Membranes for Gas Separations: Promises and Challenges[J]. Ind. Eng. Chem. Res., 2012,51(5):2179-2199. doi: 10.1021/ie202038m

    9. [9]

      Sheng L Q, Wang C Q, Yang F, Xiang L, Huang X J, Yu J, Zhang L X, Pan Y C, Li Y S. Enhanced C3H6/C3H8 Separation Performance on MOF Membranes Through Blocking Defects and Hindering Framework Flexibility by Silicone Rubber Coating[J]. Chem. Commun., 2017,53(55):7760-7763. doi: 10.1039/C7CC03887A

    10. [10]

      Caro J, Albrecht D, Noack M. Why is it So Extremely Difficult to Prepare Shape-Selective Al-Rich Zeolite Membranes Like LTA and FAU for Gas Separation?[J]. Sep. Purif. Technol., 2009,66(1):143-147. doi: 10.1016/j.seppur.2008.11.009

    11. [11]

      Bonilla G, Tsapatsis M, Vlachos D G, Xomeritakis G. Fluorescence Confocal Optical Microscopy Imaging of the Grain Boundary Structure of Zeolite MFI Membranes Made by Secondary (Seeded) Growth[J]. J. Membr. Sci., 2001,182(1):103-109.  

    12. [12]

      Huang A S, Liu Q, Wang N Y, Caro J. Organosilica Functionalized Zeolitic Imidazolate Framework ZIF-90 Membrane for CO2/CH4 Separation[J]. Microporous Mesoporous Mater., 2014,192:18-22. doi: 10.1016/j.micromeso.2013.09.025

    13. [13]

      Kanezashi M, O'Brien-Abraham J, Lin Y S, Suzuki K. Gas Permeation Through DDR-type Zeolite Membranes at High Temperatures[J]. AIChE J., 2008,54(6):1478-1486. doi: 10.1002/aic.11457

    14. [14]

      Yu M, Funke H H, Noble R D, Falconer J L. H2 Separation Using Defect-Free, Inorganic Composite Membranes[J]. J. Am. Chem. Soc., 2011,133(6):1748-1750. doi: 10.1021/ja108681n

    15. [15]

      Zhou R F, Wang H M, Wang B, Chen X S, Li S G, Yu M. Defect-Patching of Zeolite Membranes by Surface Modification Using Siloxane Polymers for CO2 Separation[J]. Ind. Eng. Chem. Res., 2015,54(30):7516-7523. doi: 10.1021/acs.iecr.5b01034

    16. [16]

      Nomura M, Yamaguchi T, Nakao S I. Silicalite Membranes Modified by Counterdiffusion CVD Technique[J]. Ind. Eng. Chem. Res., 1997,36(10):4217-4223. doi: 10.1021/ie970338a

    17. [17]

      Sun C G, Feng X S. Enhancing the Performance of PVDF Membranes by Hydrophilic Surface Modification via Amine Treatment[J]. Sep. Purif. Technol., 2017,185:94-102. doi: 10.1016/j.seppur.2017.05.022

    18. [18]

      Zhang Y T, Qiu X F, Hong Z, Du P, Song Q N, Gu X H. All-Silica DD3R Zeolite Membrane with Hydrophilic-Functionalized Surface for Efficient and Highly-Stable Pervaporation Dehydration of Acetic Acid[J]. J. Membr. Sci., 2019,581:236-242. doi: 10.1016/j.memsci.2019.03.061

    19. [19]

      Tanaka K, Yoshikawa R, Cui Y, Kita H, Okamoto K. Application of Zeolite T Membrane to Vapor-Permeation-Aided Esterification of Lactic Acid with Ethanol[J]. Chem. Eng. Sci., 2002,57(9):1577-1584. doi: 10.1016/S0009-2509(02)00033-7

    20. [20]

      Wang R, Ma N K, Yan Y S, Wang Z B. Ultrasonic-Assisted Fabrication of High Flux T-Type Zeolite Membranes on Alumina Hollow Fibers[J]. J. Membr. Sci., 2018,548:676-684. doi: 10.1016/j.memsci.2017.10.047

    21. [21]

      Chen X X, Wang J Q, Yin D H, Yang J H, Lu J M, Zhang Y, Chen Z. High-Performance Zeolite T Membrane for Dehydration of Organics by a New Varying Temperature Hot-Dip Coating Method[J]. AIChE J., 2013,59(3):936-947. doi: 10.1002/aic.13851

    22. [22]

      Zhang F, Zheng Y H, Hu L L, Hu N, Zhu M H, Zhou R F, Chen X S, Kita H. Preparation of High-Flux Zeolite T Membranes Using Reusable Macroporous Stainless Steel Supports in Fluoride Media[J]. J. Membr. Sci., 2014,456:107-116. doi: 10.1016/j.memsci.2014.01.023

    23. [23]

      Zhou J J, Zhou C, Xu K, Caro J, Huang A S. Seeding-Free Synthesis of Large Tubular Zeolite FAU Membranes for Dewatering of Dimethyl Carbonate by Pervaporation[J]. Microporous Mesoporous Mater., 2020,292109713. doi: 10.1016/j.micromeso.2019.109713

    24. [24]

      He M L, Zhang Y P, Wang Y Y, Wang X Q, Li Y Q, Hu N, Wu T, Zhang F, Dai Z F, Chen X S, Kita H. High Hydrogen Permeable ZIF-8 Membranes on Double Modified Substrates[J]. Sep. Purif. Technol., 2021,275(15)119109.  

    25. [25]

      Fasano M, Humplik T, Bevilacqua A, Tsapatsis M, Chiavazzo E, Wang E N, Asinari P. Interplay Between Hydrophilicity and Surface Barriers on Water Transport in Zeolite Membranes[J]. Nat. Commun., 2016,712762. doi: 10.1038/ncomms12762

    26. [26]

      Qiao B, Wang T J, Gao H, Jin Y. High Density Silanization of NanoSilica Particles Using γ-Aminopropyltriethoxysilane (APTES)[J]. Appl. Surf. Sci., 2015,351:646-654. doi: 10.1016/j.apsusc.2015.05.174

    27. [27]

      Zhang F X, Srinivasan M P. Self-Assembled Molecular Films of Aminosilanes and Their Immobilization Capacities[J]. Langmuir, 2004,20(6):2309-2314. doi: 10.1021/la0354638

    28. [28]

      Wang N Y, Mundstock A, Liu Y, Huang A S, Caro J. Amine-Modified Mg-MOF-74/CPO-27-Mg Membrane with Enhanced H2/CO2 Separation[J]. Chem. Eng. Sci., 2015,124:27-36. doi: 10.1016/j.ces.2014.10.037

    29. [29]

      Majoul N, Aouida S, Bessaïs B. Progress of Porous Silicon APTES-Functionalization by FTIR Investigations[J]. Appl. Surf. Sci., 2015,331:388-391. doi: 10.1016/j.apsusc.2015.01.107

    30. [30]

      Hernández-Morales V, Nava R, Acosta-Silva Y J, Macías-Sánchez S A, Pérez-Bueno J J, Pawelec B. Adsorption of Lead (Ⅱ) on SBA -15 Mesoporous Molecular Sieve Functionalized with -NH2 Groups[J]. Microporous Mesoporous Mater., 2012,160:133-142. doi: 10.1016/j.micromeso.2012.05.004

    31. [31]

      Acres R G, Ellis A V, Alvino J, Lenahan C E, Khodakov D A, Metha G F, Andersson G G. Molecular Structure of 3-Aminopropyltriethoxysilane Layers Formed on Silanol-Terminated Silicon Surfaces[J]. J. Phys. Chem. C, 2012,116(10):6289-6297. doi: 10.1021/jp212056s

    32. [32]

      Vandenberg E T, Bertilsson L, Liedberg B, Uvdal K, Erlandsson R, Elwing H, Lundström I. Structure of 3-Aminopropyl Triethoxy Silane on Silicon Oxide[J]. J. Colloid Interface Sci., 1991,147(1):103-118. doi: 10.1016/0021-9797(91)90139-Y

    33. [33]

      Zhang H F, James J, Zhao M, Yao Y, Zhang Y S, Zhang B Q, Lin Y S. Improving Hydrostability of ZIF-8 Membranes via Surface Ligand Exchange[J]. J. Membr. Sci., 2017,532:1-8. doi: 10.1016/j.memsci.2017.01.065

    34. [34]

      Chang H, Wang Y, Xiang L, Liu D H, Wang C Q, Pan Y C. Improved H2/CO2 Separation Performance on Mixed-Linker ZIF-7 Polycrystalline Membranes[J]. Chem. Eng. Sci., 2018,192:85-93. doi: 10.1016/j.ces.2018.07.027

  • 加载中
    1. [1]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    2. [2]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    3. [3]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    4. [4]

      Wantong ZhangZixing XuGuofei DaiZhijian LiChunhui Deng . Removal of Microcystin-LR in lake water sample by hydrophilic mesoporous silica composites under high-throughput MALDI-TOF MS detection platform. Chinese Chemical Letters, 2024, 35(5): 109135-. doi: 10.1016/j.cclet.2023.109135

    5. [5]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    6. [6]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    7. [7]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    8. [8]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    9. [9]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    10. [10]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    11. [11]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    12. [12]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    13. [13]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    14. [14]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    15. [15]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    16. [16]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    17. [17]

      Fenglin JiangAnan LiuQian WeiYoucai Hu . Editing function of type Ⅱ thioesterases in the biosynthesis of fungal polyketides. Chinese Chemical Letters, 2024, 35(10): 109504-. doi: 10.1016/j.cclet.2024.109504

    18. [18]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    19. [19]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    20. [20]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

Metrics
  • PDF Downloads(2)
  • Abstract views(642)
  • HTML views(218)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return