Citation: Liang XIAN, Bi-Quan SU, Yin-Xia FENG, Ning-Jing CAO, Li SHENG, Jing MA, Bei XI. Visible Light-Assisted Synthesis of Platinum Nanoparticles for Catalytic Reduction Reaction of p-Nitrophenol[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2260-2266. doi: 10.11862/CJIC.2021.227 shu

Visible Light-Assisted Synthesis of Platinum Nanoparticles for Catalytic Reduction Reaction of p-Nitrophenol

  • Corresponding author: Liang XIAN, lxian@xbmu.edu.cn
  • Received Date: 24 February 2021
    Revised Date: 5 September 2021

Figures(5)

  • Here, platinum nanoparticles were synthesized on multi-walled carbon nanotubes (MWCNTs) in one step under the irradiation of visible light without any extra additives except ethylene glycol (EG) as the reducing agent and stabilizer, and Pt/MWCNTs composites were successfully prepared. The catalytic performance of Pt/MWCNTs was studied in the reduction of p-nitrophenol (p-NP). The morphology and crystal structure of as-synthesized materials were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Visible light irradiation promotes the hydrolysis of a[PtCl4]2- precursor in EG aqueous solution. By the electronic effect of the metal interface, the reduction of platinum precursors makes the formation of the uniformly dispersed Pt metal ultra-small particles with an average of 2.1 nm size. The as-prepared Pt/MWCNTs effectively catalyzed the reduction of p-NP to p-aminophenol (p-AP) with NaBH4, exhibiting a high catalytic performance with an apparent rate constant of 0.25 min-1. Furthermore, high reusability without significant activity loss presents that Pt/MWCNTs prepared can be an excellent and stable catalyst. The experimental results prove that besides traditional light irradiation methods, e.g. ultraviolet, the proper utilization of visible light is also a very effective method for preparing platinum metal catalysts and the morphology control can be achieved in some simple ways rather than complex reaction conditions.
  • 加载中
    1. [1]

      Zhou S, Zhao M, Yang T H, Xia Y. Decahedral Nanocrystals of Noble Metals: Synthesis, Characterization, and Applications[J]. Mater. Today, 2019,22:108-131. doi: 10.1016/j.mattod.2018.04.003

    2. [2]

      Valero-Gómez A, Molina J, Bosch F. Electrochemical Synthesis of Pt Nanoparticles on Gas Diffusion Layers as Cathodes for PEM Electrolyzers[J]. Mater. Today: Proc., 2020,20:365-372. doi: 10.1016/j.matpr.2019.10.075

    3. [3]

      Banik S, Mahajan A, Ray A, Majumdar D, Das S, Bhattacharya S K. Temperature Control Synthesis of Platinum Nanoparticle-Decorated Reduced Graphene Oxide of Different Functionalities for Anode-Catalytic Oxidation of Methanol[J]. FlatChem, 2019,16:100111-100124. doi: 10.1016/j.flatc.2019.100111

    4. [4]

      Wei H H, Huang K, Wang D, Zhang R Y, Ge B H, Ma J Y, Wen B, Zhang S, Li Q Y, Lei M, Zhang C, Irawan J, Liu L M, Wu H. Iced Photochemical Reduction to Synthesize Atomically Dispersed Metals by Suppressing Nanocrystal Growth[J]. Nat. Commun., 2017,8(1):1-8. doi: 10.1038/s41467-016-0009-6

    5. [5]

      Kong X, Cao H L, Li C, Chen X. One Step Photochemical Synthesis of Clean Surfaced Sponge-like Porous Platinum with High Catalytic Performances[J]. J. Colloid Interface Sci., 2017,487:60-67. doi: 10.1016/j.jcis.2016.10.005

    6. [6]

      Liu L, Corma A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles[J]. Chem. Rev., 2018,118(10):4981-5079. doi: 10.1021/acs.chemrev.7b00776

    7. [7]

      Pajic M N K, Stevanovic S I, Radmilovic V V, Gavrilovic-Wohlmuther A, Radmilovic V R, Gojkovic S L, Jovanovic V M. Shape Evolution of Carbon Supported Pt Nanoparticles: From Synthesis to Application[J]. Appl. Catal. B, 2016,196:174-184. doi: 10.1016/j.apcatb.2016.05.033

    8. [8]

      Kohsakowski S, Streubel R, Radev I, Peinecke V, Barcikowski S, Marzun G, Reichenberger S. First PEM Fuel Cell Based on Ligand-Free, Laser-Generated Platinum Nanoparticles[J]. Appl. Surf. Sci., 2019,467:486-492.  

    9. [9]

      Xian L, Engelbrecht L, Barkhuysen S, Koch K R. Room Temperature Photo-Induced Deposition of Platinum Mirrors and Nano-Layers from Simple Pt(Ⅱ) Precursor Complexes in Water-Methanol Solution[J]. RSC Adv., 2016,6:34014-34020. doi: 10.1039/C6RA03318K

    10. [10]

      Feng Y X, Su B Q, Xian L, Ma Y J, Sheng L, Cao N J. In Situ Synthesis of Surfactant-Free Pt Nanoparticles Supported on Multi-walled Carbon Nanotubes under Visible Light[J]. Chem. Pap., 2020,74:1189-1197. doi: 10.1007/s11696-019-00955-y

    11. [11]

      Xian L, Su B Q, Feng Y X, Xi B, Duan Z Y. The Photochemical Effects of Visible Light on K2[J]. Inorg. Nano-Metal Chem., 2021,51(6):882-888. doi: 10.1080/24701556.2020.1812646

    12. [12]

      Fu J W, Shao S M, Wang X Z, Yan Y, Wang K, Gao M, Xu Q. Facile Preparation of Highly Dispersed Pt Nanoparticles Supported on Heteroatom-Containing Porous Carbon Nanospheres and Their Catalytic Properties for the Reduction of 4-Nitrophenol[J]. J. Porous Mater., 2018,25(4):1081-1089. doi: 10.1007/s10934-017-0519-6

    13. [13]

      Yu R Q, Chen L W, Liu Q P, Lin J Y, Tan K L, Ng S C, Chan H S O, Xu G Q, Hor T S A. Platinum Deposition on Carbon Nanotubes via Chemical Modification[J]. Chem. Mater., 1998,10(3):718-722. doi: 10.1021/cm970364z

    14. [14]

      Ozdemir O K. A Novel Method to Produce Few Layers of Graphene as Support Materials for Platinum Catalyst[J]. Chem. Pap., 2019,73(2):387-395. doi: 10.1007/s11696-018-0588-2

    15. [15]

      Jha N, Ramaprabhu S. Thermal Conductivity Studies of Metal Dispersed Multiwalled Carbon Nanotubes in Water and Ethylene Glycol Based Nanofluids[J]. J. Appl. Phys., 2009,106(8)084317. doi: 10.1063/1.3240307

    16. [16]

      Esquivel-Peña V, Bastos-Arrieta J, Muñoz M, Mora-Tamez L, Munguía-Acevedo N M, Ocampo A L, Gyves J D. Metal Nanoparticle-Carbon Nanotubes Hybrid Catalysts Immobilized in a Polymeric Membrane for the Reduction of 4-Nitrophenol[J]. SN Applied Sci., 2019,1(4):1-11. doi: 10.1007/s42452-019-0357-z

    17. [17]

      Ji J P, Zhang Y P, Tang L B, Liu C Y, Gao X H, Sun M H, Zheng J C, Ling M, Liang C D, Lin Z. Platinum Single-Atom and Cluster Anchored on Functionalized MWCNTs with Ultrahigh Mass Efficiency for Electrocatalytic Hydrogen Evolution[J]. Nano Energy, 2019,63:103849-103856. doi: 10.1016/j.nanoen.2019.06.045

    18. [18]

      Islam M T, Sultana K A, Noveron J C. Borohydride-Free Catalytic Reduction of Organic Pollutants by Platinum Nanoparticles Supported on Cellulose Fibers[J]. J. Mol. Liq., 2019,296:111988-112013. doi: 10.1016/j.molliq.2019.111988

    19. [19]

      Guan Z H, Lu S M, Li C. Highly Oxidized Pt Species Stabilized Inside Carbon Nanotubes for Asymmetric Hydrogenation[J]. Chin. J. Catal., 2015,36(9):1535-1542. doi: 10.1016/S1872-2067(15)60831-2

    20. [20]

      Hsieh C T, Tzou D Y, Jiang M T. Methanol Electro-Oxidation on Pt Nanocatalysts Prepared by Atomic Layer Deposition[J]. J. Electroanal. Chem., 2017,794:139-147. doi: 10.1016/j.jelechem.2017.04.020

    21. [21]

      Yi L H, Song Y F, Yi W, Wang X Y, Wang H, He P Y, Hu B N. Carbon Supported Pt Hollow Nanospheres as Anode Catalysts for Direct Borohydride-Hydrogen Peroxide Fuel Cells[J]. Int. J. Hydrogen Energy, 2011,36(18):11512-11518. doi: 10.1016/j.ijhydene.2011.04.077

    22. [22]

      Wu S L, Liu J, Ye Y X, Tian Z F, Zhu X G, Liang C H. Oxygen Defects Induce Strongly Coupled Pt/Metal Oxides/rGO Nanocomposites for Methanol Oxidation Reaction[J]. ACS Appl. Energy Mater., 2019,2(8):5577-5583. doi: 10.1021/acsaem.9b00756

    23. [23]

      Wang Y N, Li Q C, Zhang P, O'Connor D, Varma R S, Yu M, Hou D. One-Pot Green Synthesis of Bimetallic Hollow Palladium-Platinum Nanotubes for Enhanced Catalytic Reduction of p-Nitrophenol[J]. J. Colloid Interface Sci., 2019,539:161-167. doi: 10.1016/j.jcis.2018.12.053

    24. [24]

      Kalekar A M, Sharma K K K, Lehoux A, Audonnet F, Remita H, Saha A, Sharma G K. Investigation into the Catalytic Activity of Porous Platinum Nanostructures[J]. Langmuir, 2013,29(36):11431-11439. doi: 10.1021/la401302p

    25. [25]

      Li R, Zhang P, Huang Y M, Chen C L, Chen Q W. Facile Approach to Prepare Pd Nanoarray Catalysts within Porous Alumina Templates on Macroscopic Scales[J]. ACS Appl. Mater. Interfaces, 2013,5(23):12695-12700. doi: 10.1021/am4040762

    26. [26]

      Bogireddy N K R, Sahare P, Pal U, Méndez S F O, Gomez L M, Agarwal V. Platinum Nanoparticle-Assembled Porous Biogenic Silica 3D Hybrid Structures with Outstanding 4-Nitrophenol Degradation Performance[J]. Chem. Eng. J., 2020,388:124237-124251. doi: 10.1016/j.cej.2020.124237

    27. [27]

      Ghosh S K, Mandal M, Kundu S, Nath S, Pal T. Bimetallic Pt-Ni Nanoparticles Can Catalyze Reduction of Aromatic Nitro Compounds by Sodium Borohydride in Aqueous Solution[J]. Appl. Catal. A, 2004,268(1/2):61-66.  

  • 加载中
    1. [1]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    2. [2]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    6. [6]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    7. [7]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    8. [8]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    9. [9]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    10. [10]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    11. [11]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    12. [12]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    13. [13]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    14. [14]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    15. [15]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    16. [16]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    17. [17]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    18. [18]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    19. [19]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    20. [20]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

Metrics
  • PDF Downloads(3)
  • Abstract views(944)
  • HTML views(202)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return