Citation: Fu-Kai ZHENG, Zong-Lin LI, Yu-Qi CAO, Hui ZHANG, Xin CAO, Jian-Hua SUN. Cobalt and Carbon Co-doped Carbon Nitride for Enhanced Photocatalytic Hydrogen Evolution[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 2029-2036. doi: 10.11862/CJIC.2021.226 shu

Cobalt and Carbon Co-doped Carbon Nitride for Enhanced Photocatalytic Hydrogen Evolution

  • Corresponding author: Hui ZHANG, zhanghui@jsut.edu.cn
  • Received Date: 19 May 2021
    Revised Date: 16 July 2021

Figures(8)

  • The photocatalytic activity of carbon nitride is greatly limited by the low visible-light utilization and fast photocarries recombination. Here, a new cobalt and carbon co-doped carbon nitride (CNCoC) was prepared via a one -step thermal condensation method using vitamin B12 (VB12) as the cobalt and carbon source mixed with urea. The characterization results indicate that the cobalt and carbon co-doping does not change the morphology, skeleton structure or functional groups of carbon nitride. However, the co-doping contributes to the enhanced surface area, optimized band structure and increased visible-light absorption. More importantly, compared to carbon doping, the synergistic effect of cobalt and carbon co-doping leads to more efficient photocarrier separation and transport. As a result, the photocatalytic hydrogen evolution rate of CNCoC-6 prepared with 6 mg VB12 reached 56.1 μmol·h-1 under visible light irradiation, which was 3.05 times that of pure carbon nitride (CN). While the carbon doped carbon nitride (CNC-6) only exhibited a hydrogen evolution rate to be 2.55 times that of CN.
  • 加载中
    1. [1]

      Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972,238(5358):37-38. doi: 10.1038/238037a0

    2. [2]

      Tang J, Durrant J R, Klug D R. Mechanism of Photocatalytic Water Splitting in TiO2[J]. Reaction of Water with Photoholes, Importance of Charge Carrier Dynamics, and Evidence for Four-Hole Chemistry. J. Am. Chem. Soc., 2008,130(42):13885-13891.

    3. [3]

      Zhang Y Y, Han L L, Wang C H, Wang W H, Ling T, Yang J, Dong C K, Lin F, Du X W. Zinc-Blende CdS Nanocubes with Coordinated Facets for Photocatalytic Water Splitting[J]. ACS Catal., 2017,7(2):1470-1477. doi: 10.1021/acscatal.6b03212

    4. [4]

      Wang M, Han X X, Zhao Y, Li J J, Ju P, Hao Z M. Tuning Size of MoS2 in MoS2/Graphene Oxide Heterostructures for Enhanced Photocatalytic Hydrogen Evolution[J]. J. Mater. Sci., 2018,53(5):3603-3612.  

    5. [5]

      Shen R C, Zhang L P, Chen X Z, Jaroniec M, Li N, Li X. Integrating 2D/2D CdS/α-Fe2O3 Utrathin Bilayer Z-Scheme Heterojunction with Metallic β-NiS Nanosheet-Based Ohmic-Junction for Efficient Photocatalytic H2 Evolution[J]. Appl. Catal. B, 2020,266118619. doi: 10.1016/j.apcatb.2020.118619

    6. [6]

      Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light[J]. Nat. Mater., 2009,8(1):76-80. doi: 10.1038/nmat2317

    7. [7]

      Sun J H, Zhang J S, Zhang M W, Antonietti M, Fu X Z, Wang X C. Bioinspired Hollow Semiconductor Nanospheres as Photosynthetic Nanoparticles[J]. Nat. Commun., 2012,31139. doi: 10.1038/ncomms2152

    8. [8]

      Jun Y S, Lee E Z, Wang X C, Hong W H, Stucky G D, Thomas A. From Melamine-Cyanuric Acid Supramolecular Aggregates to Carbon Nitride Hollow Spheres[J]. Adv. Funct. Mater., 2013,23(29):3661-3667. doi: 10.1002/adfm.201203732

    9. [9]

      Dong G H, Zhao K, Zhang L Z. Carbon Self-Doping Induced High Electronic Conductivity and Photoreactivity of g-C3N4[J]. Chem. Commun., 2012,48(49):6178-6180. doi: 10.1039/c2cc32181e

    10. [10]

      Wei F Y, Liu Y, Zhao H, Ren X N, Liu J, Hasan T, Chen L H, Li Y, Su B L. Oxygen Self-Doped g-C3N4 with Tunable Electronic Band Structure for Unprecedentedly Enhanced Photocatalytic Performance[J]. Nanoscale, 2018,10(9):4515-4522. doi: 10.1039/C7NR09660G

    11. [11]

      Wang N, Wang J, Hu J H, Lu X Q, Sun J, Shi F, Liu Z H, Lei Z B, Jiang R B. Design of Palladium-Doped g-C3N4 for Enhanced Photocatalytic Activity toward Hydrogen Evolution Reaction[J]. ACS Appl. Energy Mater., 2018,1(6):2866-2873. doi: 10.1021/acsaem.8b00526

    12. [12]

      Zheng D D, Zhang G G, Wang X C. Integrating CdS Quantum Dots on Hollow Graphitic Carbon Nitride Nanospheres for Hydrogen Evolution Photocatalysis[J]. Appl. Catal. B, 2015,179:479-488. doi: 10.1016/j.apcatb.2015.05.060

    13. [13]

      Liu R X, Yang W L, He G W, Zheng W, Li M K, Tao W L, Tian M K. Ag-Modified g-C3N4 Prepared by a One-Step Calcination Method for Enhanced Catalytic Efficiency and Stability[J]. ACS Omega, 2020,5(31):19615-19624. doi: 10.1021/acsomega.0c02161

    14. [14]

      Wang Q, Li J, Tu X J, Liu H B, Shu M, Si R, Ferguson C T J, Zhang K A I, Li R. Single Atomically Anchored Cobalt on Carbon Quantum Dots as Efficient Photocatalysts for Visible Light-Promoted Oxidation Reactions[J]. Chem. Mater., 2020,32(2):734-743. doi: 10.1021/acs.chemmater.9b03708

    15. [15]

      Zhang G G, Zang S H, Wang X C. Layered Co(OH)2 Deposited Polymeric Carbon Nitrides for Photocatalytic Water Oxidation[J]. ACS Catal., 2015,5(2):941-947. doi: 10.1021/cs502002u

    16. [16]

      Wang Y, Liu X Q, Liu J, Han B, Hu X Q, Yang F, Xu Z W, Li Y C, Jia S R, Li Z, Zhao Y L. Carbon Quantum Dot Implanted Graphite Carbon Nitride Nanotubes: Excellent Charge Separation and Enhanced Photocatalytic Hydrogen Evolution[J]. Angew. Chem. Int. Ed., 2018,57(20):5765-5771. doi: 10.1002/anie.201802014

    17. [17]

      Zhang H, Liu F, Wu H, Cao X, Sun J H, Lei W W. In Situ Synthesis of g-C3N4/TiO2 Heterostructures with Enhanced Photocatalytic Hydrogen Evolution under Visible Light[J]. RSC Adv., 2017,7(64):40327-40333. doi: 10.1039/C7RA06786K

    18. [18]

      Xing W N, Chen G, Li C M, Sun J X, Han Z H, Zhou Y S, Hu Y D, Meng Q Q. Construction of Large-Scale Ultrathin Graphitic Carbon Nitride Nanosheets by a Hydrogen-Bond-Assisted Strategy for Improved Photocatalytic Hydrogen Production and Ciprofloxacin Degradation Activity[J]. ChemCatChem, 2016,8(17):2838-2845. doi: 10.1002/cctc.201600397

    19. [19]

      Zhang G G, Zang S H, Lin L H, Lan Z A, Li G S, Wang X C. Ultrafine Cobalt Catalysts on Covalent Carbon Nitride Frameworks for Oxygenic Photosynthesis[J]. ACS Appl. Mater. Interfaces, 2016,8(3):2287-2296. doi: 10.1021/acsami.5b11167

    20. [20]

      Chu X Y, Qu Y, Zada A, Bai L L, Li Z J, Yang F, Zhao L N, Zhang G L, Sun X J, Yang Z D, Jing L Q. Ultrathin Phosphate-Modulated Co Phthalocyanine/g-C3N4 Heterojunction Photocatalysts with Single Co-N4(Ⅱ) Sites for Efficient O2 Activation[J]. Adv. Sci., 2020,7(16)2001543. doi: 10.1002/advs.202001543

    21. [21]

      Zhang G G, Lan Z A, Lin L H, Lin S, Wang X C. Overall Water Splitting by Pt/g-C3N4 Photocatalysts without Using Sacrificial Agents[J]. Chem. Sci., 2016,7(5):3062-3066. doi: 10.1039/C5SC04572J

    22. [22]

      Che W, Cheng W R, Yao T, Tang F M, Liu W, Su H, Huang Y Y, Liu Q H, Liu J K, Hu F C, Pan Z Y, Sun Z H, Wei S Q. Fast Photoelectron Transfer in (Cring)-C3N4 Plane Heterostructural Nanosheets for Overall Water Splitting[J]. J. Am. Chem. Soc., 2017,139(8):3021-3026. doi: 10.1021/jacs.6b11878

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    13. [13]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    14. [14]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    15. [15]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

Metrics
  • PDF Downloads(14)
  • Abstract views(1290)
  • HTML views(454)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return