Citation: Hong-Hua WU, Feng-Hua ZU, Shan FU, Xiao-Long DONG, Su-Yun LI, Jian-Jun YI, Hai-Jun HAO, Qing-Hong XU. Ag@Silsequioxanes: Synthesis and Its Catalytic Reduction Performance for p-Nitrophenol[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 1961-1969. doi: 10.11862/CJIC.2021.225 shu

Ag@Silsequioxanes: Synthesis and Its Catalytic Reduction Performance for p-Nitrophenol

Figures(9)

  • Aminopropyltriethoxysilane and oxalyl chloride were used as raw materials to synthesize silsesquioxanes containing imino and carbonyl functional groups. A composite with silver nanoparticles (average particle size of about 15 nm) uniformly dispersed on the surface of the siloxane polymer was obtained through coordination adsorption and reduction. The research results showed that the weight percentage of silver loaded in the composite was about 13.66% and p-nitrophenol (4-NP) was completely reduced to 4-aminophenol (4-AP) within 6 min at 25℃ in aqueous solution by the composite catalyst, and the composite catalyst remained 95% activity after used 7 times. Under room temperature and one atmospheric pressure, the highest activity of the composite catalyst was about 33.0 g4-AP·gAg-1, which showed excellent catalytic reduction performance.
  • 加载中
    1. [1]

      Rahimi R, Moghaddam S S, Rabbani M. Comparison of Photocatalysis Degradation of 4-Nitrophenol Using N, S Co-doped TiO2 Nanoparticles Synthesized by Two Different Routes[J]. J. Sol-Gel Sci. Technol., 2012,64:17-26. doi: 10.1007/s10971-012-2823-6

    2. [2]

      Pohanish R P. Sittig's Handbook of Toxic and Hazardous Chemicals and Carcinogens. 6nd ed. U. S. : William Andrew Publishing, 2012: 2757-2760

    3. [3]

      Tang P, Deng C Y, Tang X S, Si S H, Xiao K. Degradation of p-Nitrophenol by Interior Microelectrolysis of Zero-Valent Iron/Copper-coated Magnetic Carbon Galvanic Couples in the Intermittent Magnetic Field[J]. Chem. Eng. J., 2012,210:203-211. doi: 10.1016/j.cej.2012.08.089

    4. [4]

      Folsom B R, Stierli R, Schwarzenbach R P, Zeyer J. Comparison of Substituted 2-Nitrophenol Degradation by Enzyme Extracts and Intact Cells[J]. Environ. Sci. Technol., 1994,28(2):306-311. doi: 10.1021/es00051a018

    5. [5]

      QIAO Z H, LIU H L, HE C X, WEI C M. Research Progress on the Removal of p-Nitrophenol[J]. Guangdong Chemical Industry, 2019,46(21):72-73, 81.  

    6. [6]

      Park S J, Kim K D. Influence of Activation Temperature on Adsorption Characteristics of Activated Carbon Fiber Composites[J]. Carbon, 2001,39(11):1741-1746. doi: 10.1016/S0008-6223(00)00305-5

    7. [7]

      ZHANG W, YONG H Y, CHEN X Q. Treatment of Industrial Wastewater Containing p-Nitrophenol by Resin Adsorption[J]. China Chlor-Alkali, 2003,4:39-41.  

    8. [8]

      WANG Y H. The Synthetic of Sulfidated Nano Zero Valent Iron Supported by Bentonite and the Research on the Removal of p-Nitrophenol. Jinan: Shandong University, 2018.

    9. [9]

      PAN S L. Application of Silicalite-2 Zeolite in Water Treatment. Yangzhou: Yangzhou University, 2013.

    10. [10]

      WAN H, HUANG D Y, CAI Y, GUAN G F. Extraction of Phenolic Compounds with[omim] BF4 Ionic Liquid.[J]. J. Chem. Eng. Chinese Univ., 2008,22(1):162-165. doi: 10.3321/j.issn:1003-9015.2008.01.030

    11. [11]

      Xu J Q, Duan W H, Zhou X Z, Zhou J Z. Extraction of Phenol in Wastewater with Annular Centrifugal Contactors[J]. J. Hazard. Mater., 2006,131(1/2/3):98-102.

    12. [12]

      YANG P F. Treatment of High Concentration Nitrobenzene Wastewater by Extraction-Homogeneous Catalytic Ozonation Enhanced by High Gravity. Taiyuan: North University of China, 2018.

    13. [13]

      Nielson C E. Recycling of Waste Waters from Textile Dyeing Using Crossflow Membrane Filtration[J]. Filtr. Sep., 1994,31(6):593-595. doi: 10.1016/0015-1882(94)80051-0

    14. [14]

      WAN Y H, WANG X D, ZHANG X J. Study on the Treatment of Wastewater Containing High Concentration of Phenol by Liquid Membrane[J]. Journal of South China University of Technology (Natural Science Edition), 1998,26(6):37-42. doi: 10.3321/j.issn:1000-565X.1998.06.007

    15. [15]

      Ribeiro R M, Bergamasco R, Gimenes M L. Membranes Synthesis Study for Colour Removal of a Textile Effluent[J]. Desalination, 2002,145:61-63. doi: 10.1016/S0011-9164(02)00368-5

    16. [16]

      DENG G C, LIU G J, JIANG K X, WANG X, ZHANG X, ZHANG Y Y, ZHANG S L. Treatment of Nitrophenol Wastewater by the Emulsion Liquid Membrane Method[J]. Journal of Liaoning University (Natural Sciences Edition), 2005,3:210-214. doi: 10.3969/j.issn.1000-5846.2005.03.005

    17. [17]

      Prakash D, Chauhan A, Jain R K. Plasmid-Encoded Degradation of p-Nitrophenol by Pseudomonas Cepacian[J]. Biochem. Biophys. Res. Commun., 1996,224(2):380-381.  

    18. [18]

      Bhatti Z I, Toda H, Furukawa K. p-Nitrophenol Degradation by Activated Sludge Attached on Nonwovens[J]. Water Res., 2002,36(5):1135-1142. doi: 10.1016/S0043-1354(01)00292-5

    19. [19]

      Sponza D T, Kuşçu Ö S. p-Nitrophenol Removal in a Sequential Anaerobic Migrating Blanket Reactor (AMBR)/Aerobic Completely Stirred Tank Reactor (CSTR) System[J]. Process Biochem., 2005,40(5):1679-1691. doi: 10.1016/j.procbio.2004.06.063

    20. [20]

      REN L, LIU B, LIN Z, ZHEN Z, LIU Y L, HU H Q, YAN Y C. Isolation of a p-Nitrophenol-Degrading Bacterium and Investigation of Its Degrading Mechanism[J]. Biotechnology Bulletin, 2019,35(9):184-193.  

    21. [21]

      ZHAO X L. Mechanism Study on Degradation of p-Nitrophenol by Fenton Reagent. Nanjing: Nanjing University of Science and Technology, 2014.

    22. [22]

      ZHANG W B, XIAO X M, FU J M, SHENG G Y, LIU G H. Degradation of Nitrophenol in Water by UV/H2O2 Process and Influencing Factors[J]. Research of Environmental Sciences, 2001,6:9-11.  

    23. [23]

      QIU L P, WANG W K, DU J. Degradation of Low Concentration Nitrobenzene in Underground Water by KMnO4-O3 Synergetic Oxidation[J]. Technology of Water Treatment, 2009,7:46-50.  

    24. [24]

      XU Y. Study on the Process and Mechanism of Degradation of Nitro-phenol by Advanced Oxidation Process. Guangzhou: South China University of Technology, 2016.

    25. [25]

      LI S Y, LIU Y Z, ZHANG Q L, BAI M. Review on Preparation Methods of p-Aminophenol[J]. Fine and Specialty Chemicals, 2011,19(12):52-54. doi: 10.3969/j.issn.1008-1100.2011.12.026

    26. [26]

      Pandey S, Mishra S B. Catalytic Reduction of p-Nitrophenol by Using Platinum Nanoparticles Stabilized by Guargum[J]. Carbohydr. Polym., 2014,113:525-531. doi: 10.1016/j.carbpol.2014.07.047

    27. [27]

      HE X Y, LIU Z R, FAN F H, QIANG S L, CHENG L. Preparation of Palladium/Polyelectrolyte Hollow Nanospheres and their Catalytic Activity in 4-Nitrophenol Reduction[J]. Chinese J. Appl. Chem., 2015,32(3):310-316.  

    28. [28]

      WU J M, YANG L, WANG X, WU J, LI S, FENG Y Y, CAI K Y. Bismuth/Nitrogen-Doped Carbon Material Preparation and Its Performance in Catalytically Reducing p-Nitrophenol[J]. Advances in Fine Petrochemicals, 2018,19(2):43-46. doi: 10.3969/j.issn.1009-8348.2018.02.013

    29. [29]

      Tedsree K, Li T, Jones S, Chan C W A, Yu K M K, Bagot P A J, Marquis E A, Smith G D W, Tsang S C E. Hydrogen Production from Formic Acid Decomposition at Room Temperature Using a Ag-Pd Core-Shell Nanocatalyst[J]. Nat. Nanotechnol., 2011,6:302-307. doi: 10.1038/nnano.2011.42

    30. [30]

      Gong P, Li H M, He X X, Wang K M, Hu J B, Tan W H, Zhang S C, Yang X H. Preparation and Antibacterial Activity of Fe3O4@Ag Nanoparticles[J]. Nanotechnology, 2007,18285604. doi: 10.1088/0957-4484/18/28/285604

    31. [31]

      Fu Y S, Huang T, Zhang L L, Zhu J W, Wang X. Ag/gC3N4 Catalyst with Superior Catalytic Performance for the Degradation of Dyes: A Borohydride-Generated Superoxide Radical Approach[J]. Nanoscale, 2015,7:13723-13733. doi: 10.1039/C5NR03260A

    32. [32]

      Elazab H A, Moussa S, Gupton B F, El-Shall M S. Microwave-Assisted Synthesis of Pd Nanoparticles Supported on Fe3O4, Co3O4, and Ni(OH)2 Nanoplates and Catalysis Application for CO Oxidation[J]. J. Nanopart. Res., 2014,162477. doi: 10.1007/s11051-014-2477-0

    33. [33]

      Rashid H M D, Mandal T K. Synthesis and Catalytic Application of Nanostructured Silver Dendrites[J]. J. Phys. Chem. C, 2007,111:16750-16760. doi: 10.1021/jp074963x

    34. [34]

      Loy D A, Obrey-Defriend K A, Wilson J K V, Minke M, Baugher B M, Baugher C R, Schneider D A, Jamison G M, Shea K J. Influence of the Alkoxide Group, Solvent, Catalyst, and Concentration on the Gelation and Porosity of Hexylene-Bridged Polysilsesquioxanes[J]. J. Non-Cryst. Solids, 2013,362(1):82-94.  

    35. [35]

      Pradhan N, Pal A, Pal T. Silver Nanoparticle Catalyzed Reduction of Aromatic Nitro Compounds[J]. Colloids Surf. A, 2002,96:247-257.  

    36. [36]

      QU C. Modification of Pan-Based Activated Carbon Fiber and Its Adsorption and Degradation Properties for p-Nitrophenol. Jinan: Shandong University, 2019.

    37. [37]

      Bao F, Tan F T, Wang W, Qiao X L, Chen J G. Facile Preparation of Ag/Ni(OH)2 Composites with Enhanced Catalytic Activity for Reduction of 4-Nitrophenol[J]. RSC Adv., 2017,7:14283-14289. doi: 10.1039/C6RA27153G

    38. [38]

      MENG X W, YANG H W, HU C Y, MAO Y Y, YANG Y W, CUI H, CHEN J L. Flower-like Silver Sphere Catalytic Material: Preparation and Catalytic Activity for the Hydrogenation Reduction of p-Nitrophenol[J]. Chinese J. Inorg. Chem., 2016,32(11):1981-1986.  

    39. [39]

      Aksela S, Kantia T, Patanen M, Mäkinen A, Urpelainen S, Aksela H. Accurate Free Atom-Solid Binding Energy Shifts for Au and Ag[J]. J. Electron. Spectrosc. Relat. Phenom., 2012,185:273-277. doi: 10.1016/j.elspec.2012.05.007

    40. [40]

      Yang Y W, Mao Y Y, Wang B, Meng X W, Han J, Wang C, Yang H W. Facile Synthesis of Cubical Co3O4 Supported Au Nanocomposites with High Activity for the Reduction of 4-Nitrophenol to 4-Aminophenol[J]. RSC Adv., 2016,6(39):32430-32433. doi: 10.1039/C6RA00183A

    41. [41]

      TANG T. Preparation and Catalytic Properties of Fe3O4@SiO2/PVP-MBAAm/Ag Hybrid Gel. Changchun: Changchun University of Technology, 2019.

  • 加载中
    1. [1]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    9. [9]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    14. [14]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    15. [15]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    19. [19]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    20. [20]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

Metrics
  • PDF Downloads(4)
  • Abstract views(1052)
  • HTML views(265)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return