Citation: Yong-He REN, Lu-Chao LI, Qi-Hui DING, Yong-Qing HUANG, Yue ZHAO. Structures and Luminescence Property of Two Co(Ⅱ) and Cd(Ⅱ) Supramolecular Coordination Networks Created via Synergistic Effect of Coordination Bonds and Secondary Interactions[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 2047-2058. doi: 10.11862/CJIC.2021.224 shu

Structures and Luminescence Property of Two Co(Ⅱ) and Cd(Ⅱ) Supramolecular Coordination Networks Created via Synergistic Effect of Coordination Bonds and Secondary Interactions

  • Corresponding author: Yong-Qing HUANG, yqhuangskd@163.com
  • Received Date: 27 December 2020
    Revised Date: 7 September 2021

Figures(7)

  • Two complexes with chemical formulas[Co(L)2(H2O)4]·2H2O (1) and[Cd(L)2(H2O)]·3H2O (2) were obtained by the reaction of 3-carboxy-1-(4-carboxybenzyl)-pyridinium bromide ((H2L) Br) with corresponding Co(Ⅱ) and Cd(Ⅱ) metal salts. Crystal structure analysis reveals that 1 is a neutral mononuclear complex, which possesses abundant hydrogen bond and π-π interaction components and can be used as supramolecular synthons. In the case of 1, mononuclear[Co(L)2(H2O)4] coordination entities are first joined via hydrogen bonding to produce channel-structured 2D layers, which are further stacked via π-π stacking effect in an interdigitating fashion, generating a 3D porous supramolecular assembly. 2 features a polymeric 1D zigzag chain structure, which is connected via π-π interactions between pendent L ligands, resulting in the formation of 1D ladder chains. Such 1D ladder chains are further combined into wave-like 2D sheets via another two kinds of π-π stacking between two adjacent side rails of 1D ladder chains. Such 2D sheets are further assembled via eight types of O-H…O hydrogen bonds to form a 3D supramolecular structure. According to topological viewpoint based on 1D chains, the 3D structure of 2 can also be deemed as the plywood-like array. In addition, 2 shows strong ultraviolet fluorescence emission with an average life-time of 2.54 ns.
  • 加载中
    1. [1]

      Sapianik A A, Kovalenko K A, Samsonenko D G, Barsukova M O, Dybtsev D N, Fedin V P. Exceptionally Effective Benzene/Cyclohexane Separation Using a Nitro-Decorated Metal-Organic Framework[J]. Chem. Commun., 2020,56(59):8241-8244. doi: 10.1039/D0CC03227A

    2. [2]

      Sun Y Y, Wang F, Zhang J. Synthesis of Anionic Metal-Organic Zeolites for Selective Gas Adsorption and Ion Exchange[J]. Inorg. Chem., 2019,58(7):4076-4079. doi: 10.1021/acs.inorgchem.9b00261

    3. [3]

      Wu N N, Li Q, Li J, Wu D P, Li Y S. 4-Connected Cobalt-Based 3D Framework with a High Affinity for Acetylene[J]. Inorg. Chem., 2020,59(14):9461-9464. doi: 10.1021/acs.inorgchem.0c01168

    4. [4]

      Sharma S, Mittal D, Verma A K, Roy I. Copper-Gallic Acid Nanoscale Metal-Organic Framework for Combined Drug Delivery and Photodynamic Therapy[J]. ACS Appl. Bio Mater., 2019,2(5):2092-2101. doi: 10.1021/acsabm.9b00116

    5. [5]

      Huang Y Q, Chen H Y, Wang Y, Ren Y H, Li Z G, Li L C, Wang Y. A Channel-Structured Eu-Based Metal-Organic Framework with a Zwitterionic Ligand for Selectively Sensing Fe3+ Ions[J]. RSC Adv., 2018,8(38):21444-21450. doi: 10.1039/C8RA02809E

    6. [6]

      Cai K, Tan W J, Zhao N, He H M. Design and Assembly of a Hierarchically Micro-and Mesoporous MOF as a Highly Efficient Heterogeneous Catalyst for Knoevenagel Condensation Reaction[J]. Cryst. Growth Des., 2020,20(7):4845-4851. doi: 10.1021/acs.cgd.0c00636

    7. [7]

      Kharitonov A D, Trofimova O Y, Meshcheryakova I N, Fukin G K, Khrizanforov M N, Budnikova Y H, Bogomyakov A S, Aysin R R, Kovalenko K A, Piskunov A V. 2D-Metal-Organic Coordination Polymers of Lanthanides (La(Ⅲ), Pr(Ⅲ) and Nd(Ⅲ)) with Redox-Active Dioxolene Bridging Ligands[J]. CrystEngComm, 2020,22(28):4675-4679. doi: 10.1039/D0CE00767F

    8. [8]

      Ponjan N, Kielar F, Dungkaew W, Kongpatpanich K, Zenno H, Hayami S, Sukwattanasinitt M, Chainok K. Self-Assembly of Three-Dimensional Oxalate-Bridged Alkali(Ⅰ)-Lanthanide(Ⅲ)Heterometal-Organic Frameworks[J]. CrystEngComm, 2020,22(29):4833-4841. doi: 10.1039/D0CE00099J

    9. [9]

      Li H Y, Xu J, Li L K, Du X S, Li F A, Xu H, Zang S Q. Photochromic Properties of a Series of Zinc(Ⅱ)-Viologen Complexes with Structural Regulation by Anions[J]. Cryst. Growth Des., 2017,17(12):6311-6319. doi: 10.1021/acs.cgd.7b00995

    10. [10]

      Ye Z M, Zhang X W, Liao P Q, Xie Y, Xu Y T, Zhang X F, Wang C, Liu D X, Huang N Y, Qiu Z H, Zhou D D, He C T, Zhang J P. A Hydrogen-Bonded yet Hydrophobic Porous Molecular Crystal for Molecular-Sieving-like Separation of Butane and Isobutane[J]. Angew. Chem. Int. Ed., 2020,59(51):23322-23328. doi: 10.1002/anie.202011300

    11. [11]

      Huang Y Q, Li Z G, Chen H Y, Cheng H D, Wang Y, Ren Y H, Zhao Y, Liu L. Pseudopolymorphism Based on 1D Metallacyclic Chains Constructed from an Angular Zwitterionic Ditopic Diacid Organic Linker[J]. CrystEngComm, 2017,19(44):6686-6693. doi: 10.1039/C7CE01568B

    12. [12]

      DING Q H, LIU Y Y, LI L C, HUANG Y Q, ZHAO Y. Syntheses, Structures and Optical Band Gaps of Three Zn(Ⅱ)/Co(Ⅱ) Coordination Polymers[J]. Chinese J. Inorg. Chem., 2020,36(11):2014-2022. doi: 10.11862/CJIC.2020.245

    13. [13]

      Zhou M, Liu G L, Ju Z F, Su K Z, Du S F, Tan Y X, Yuan D Q. Hydrogen-Bonded Framework Isomers Based on Zr-Metal Organic Cage: Connectivity, Stability, and Porosity[J]. Cryst. Growth Des., 2020,20(6):4127-4134. doi: 10.1021/acs.cgd.0c00407

    14. [14]

      Janiak C. A Critical Account on π-π Stacking in Metal Complexes with Aromatic Nitrogen-Containing Ligands[J]. J. Chem. Soc., Dalton Trans., 2000(21):3885-3896. doi: 10.1039/b003010o

    15. [15]

      Puttreddy R, Essen C V, Rissanen K. Halogen Bonds in Square Planar 2, 5-Dihalopyridine-C opper(Ⅱ)Bromide Complexes[J]. Eur. J. Inorg. Chem., 2018(20/21):2393-2398.

    16. [16]

      Hsiao H L, Wu C J, Hsu W, Yeh C W, Xie M Y, Huang W J, Chen J D. Diverse Ag(Ⅰ) Complexes Constructed from Asymmetric Pyridyl and Pyrimidyl Amide Ligands: Roles of Ag…Ag and π-π Interactions[J]. CrystEngComm, 2012,14(23):8143-8152. doi: 10.1039/c2ce25995h

    17. [17]

      Kumar N, Khullar S, Singh Y, Mandal S K. Hierarchical Importance of Coordination and Hydrogen Bonds in the Formation of Homochiral 2D Coordination Polymers and 2D Supramolecular Assemblies[J]. CrystEngComm, 2014,16(29):6730-6744. doi: 10.1039/C4CE00387J

    18. [18]

      Jiang J J, Zheng S R, Liu Y, Pan M, Wang W, Su C Y. Self-Assembly of Triple Helical and meso-Helical Cylindrical Arrays Tunable by BisTripodal Coordination Converters[J]. Inorg. Chem., 2008,47(22):10692-10699. doi: 10.1021/ic801516b

    19. [19]

      Harms S, Köferstein R, Görls H, Robl C. Syntheses and Crystal Structures of Two Cadmium Methanetetrabenzoates Featured by Open Framework and Infinite Layers[J]. Z. Anorg. Allg. Chem., 2019,645(14):912-918. doi: 10.1002/zaac.201900089

    20. [20]

      Lescop C. Coordination-Driven Syntheses of Compact Supramolecular Metallacycles toward Extended Metallo-Organic Stacked Supramo-lecular Assemblies[J]. Acc. Chem. Res., 2017,50(4):885-894. doi: 10.1021/acs.accounts.6b00624

    21. [21]

      Liu J J, Que Q T, Liu D, Suo H B, Liu J M, Xia S B. A Multifunctional Photochromic Metal-Organic Framework with Lewis Acid Sites for Selective Amine and Anion Sensing[J]. CrystEngComm, 2020,22(24):4124-4129. doi: 10.1039/D0CE00560F

    22. [22]

      Aulakh D, Nicoletta A P, Pyser J B, Varghese J R, Wriedt M. Design, Structural Diversity and Properties of Novel Zwitterionic Metal-Organic Frameworks[J]. Dalton Trans., 2017,46(21):6853-6869. doi: 10.1039/C7DT00292K

    23. [23]

      Huang Y Q, Cheng H D, Guo B L, Wan Y, Chen H Y, Li Y K, Zhao Y. Four Alkaline Earth Metal Complexes with Structural Diversities Induced by Cation Size[J]. Inorg. Chim. Acta, 2014,421:318-325. doi: 10.1016/j.ica.2014.06.030

    24. [24]

      Huang Y Q, Chen H Y, Li Z G, Wang Q, Yang Y, Cao X Q, Zhao Y. Influence of N-donor Ancilary Ligands on the Structures of Three Cadmium(Ⅱ)Complexes with L-Shaped Carboxylate Ligand[J]. Inorg. Chim. Acta, 2017,466:71-77. doi: 10.1016/j.ica.2017.05.039

    25. [25]

      Du L, Zhou L Z, Ma Y L, Wang Y N, Wang D W, Zhao Q H. Synthesis, Structures, and Photoluminescence Properties of Five Novel Zinc(Ⅱ)and Cadmium(Ⅱ)Coordination Polymers based on Different Zwitterionic Pyridine Ligands[J]. Z. Anorg. Allg. Chem., 2017,643(24):2116-2123. doi: 10.1002/zaac.201700151

    26. [26]

      Wang K M, Du L, Ma Y L, Zhao Q H. Selective Sensing of 2, 4, 6-Trinitrophenol and Detection of the Ultralow Temperature Based on a Dual-Functional MOF as a Luminescent Sensor[J]. Inorg. Chem. Commun., 2016,68:45-49. doi: 10.1016/j.inoche.2016.04.006

    27. [27]

      Kong G Q, Wu C D. Four Novel Coordination Polymers Based on a Flexible Zwitterionic Ligand and Their Framework Dependent Luminescent Properties[J]. Cryst. Growth Des., 2010,10(10):4590-4595. doi: 10.1021/cg100885e

    28. [28]

      Edgington P R, McCabe P, Macrae C F, Pidcock E, Shields G P, Taylor R, Towler M, Streek J V D. Mercury: Visualization and Analysis of Crystal Structures[J]. J. Appl. Cryst., 2006,39(3):453-457. doi: 10.1107/S002188980600731X

    29. [29]

      Wang Y Q, Gao E Q. Molecular and Supramolecular Structures of Manganese(Ⅱ)and Cobalt(Ⅱ)Complexes with 1-Carboxymethylpyri-dinium-4-carboxylate[J]. Chin. J. Struct. Chem., 2010,29(9):1331-1336.  

    30. [30]

      Chen M, Chen M Z, Zhou C Q, Lin W E, Jiang Z H. Towards Polynuclear Metal Complexes with Enhanced Bioactivities: Synthesis, Crystal Structures and DNA Cleaving Activities of Cu, Ni, Zn, Co and Mn Complexes Derived from 4-Carboxy-1-(4-carboxybenzyl) Pyridinium Bromide[J]. Inorg. Chim. Acta, 2013,405:461-469. doi: 10.1016/j.ica.2013.02.008

    31. [31]

      Zhang J Y, Wang K, Li X B, Gao E Q. Magnetic Coupling and Slow Relaxation of Magnetization in Chain-Based Mn, Co, and Ni Coordination Frameworks[J]. Inorg. Chem., 2014,53(17):9306-9314. doi: 10.1021/ic5014279

    32. [32]

      DING F F, ZHANG N, ZHANG J Y, WANG M, GAO E Q. Two Low Dimensional Cd(Ⅱ) Coordination Polymers Constructed from Zwitterionic Dicarboxylate Ligand: Syntheses, Structures, and Fluorescent Properties[J]. Chinese J. Inorg. Chem., 2015,31(10):1929-1937.  

    33. [33]

      Huang Y Q, Cheng H D, Chen H Y, Wan Y, Liu C L, Zhao Y, Xiao X F, Chen L H. Structural Diversity in Coordination Polymers with a Semirigid Lewis Acidity Ligand: Structures and Properties[J]. CrystEngComm, 2015,17(30):5690-5701. doi: 10.1039/C5CE00677E

    34. [34]

      Lin Z J, Lü J, Hong M C, Cao R. Metal-Organic Frameworks Based on Flexible Ligands (FL-MOFs): Structures and Applications[J]. Chem. Soc. Rev., 2014,43(16):5867-5895. doi: 10.1039/C3CS60483G

    35. [35]

      Yang Q Y, Pan M, Wei S C, Hsu C W, Lehn J M, Su C Y. Photoluminescent 3D Lanthanide MOFs with a Rare (10, 3)-d Net Based on a New Tripodal Organic Linker[J]. CrystEngComm, 2014,16(28):6469-6475. doi: 10.1039/C4CE00586D

    36. [36]

      Hu Z C, Deibert B J, Li J. Luminescent Metal-Organic Frameworks for Chemical Sensing and Explosive Detection[J]. Chem. Soc. Rev., 2014,43(16):5815-5840. doi: 10.1039/C4CS00010B

    37. [37]

      Xiao X, Zhu W W, Lei Y B, Liu Q Y, Li Q, Li W W. Zwitterionic Buffer-Induced Visible Light Excitation of TiO2 for Efficient Pollutant Photodegradation[J]. RSC Adv., 2016,6(42):35449-35454. doi: 10.1039/C6RA02979E

    38. [38]

      Allendorf M D, Bauer C A, Bhakta R K, Houk R J T. Luminescent Metal-Organic Frameworks[J]. Chem. Soc. Rev., 2009,38(5):1330-1352. doi: 10.1039/b802352m

  • 加载中
    1. [1]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    2. [2]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    3. [3]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    4. [4]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    5. [5]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    6. [6]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    7. [7]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    8. [8]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    9. [9]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    10. [10]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    11. [11]

      Zhengyi ShiJie YinYang XiaoZhangrong HouFei SongJianping WangQingyi TongChangxing QiYonghui Zhang . Unprecedented sesquiterpene-polycyclic polyprenylated acylphloroglucinol adduct against acute myeloid leukemia via inhibiting mitochondrial complex Ⅴ. Chinese Chemical Letters, 2024, 35(10): 109458-. doi: 10.1016/j.cclet.2023.109458

    12. [12]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    13. [13]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    14. [14]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    15. [15]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    16. [16]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    17. [17]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    18. [18]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    19. [19]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    20. [20]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

Metrics
  • PDF Downloads(0)
  • Abstract views(414)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return