Citation: Xiao-Lan YANG, Zhong-Hui WU, Ya-Jun ZHANG, Xin-Jian HE, Jin-Zhu JIA, Xiong-Zhi YANG, Jun-Li ZHOU. Application of Needle-like NiCo2O4@Carbon Cloth Composites in Lithium-Sulfur Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 1943-1949. doi: 10.11862/CJIC.2021.222 shu

Application of Needle-like NiCo2O4@Carbon Cloth Composites in Lithium-Sulfur Batteries

  • Corresponding author: Jun-Li ZHOU, zhoujlees@gdut.edu.cn
  • Received Date: 8 February 2021
    Revised Date: 6 September 2021

Figures(6)

  • Using carbon cloth (CC) as a flexible substrate, needle-like network structure NiCo2O4 was grown on the surface of CC by hydrothermal method, and then NiCo2O4@CC composites were prepared and used for lithium-sulfur battery. NiCo2O4 grows vertically on the surface of carbon fiber to form a three-dimensional network of nano-needle clusters, which provides more space for sulfur storage and effectively alleviates the volume expansion of sulfur electrode. Through adsorption experiments, it is proved that NiCo2O4@CC can effectively adsorb polysulfide, thus inhibiting the shuttle effect of polysulfide. Compared with CC/S (933 mAh·g-1), NiCo2O4@CC/S composite had better battery performance. The initial discharge specific capacity was as high as 1 467 mAh·g-1 at 0.1C, and the initial discharge specific capacity was 1 098 mAh·g-1 at 0.2C, the discharge specific capacity can remain 879 mAh·g-1 even after 200 cycles, and the average decay rate of each cycle was 0.09%, showing good cycle performance.
  • 加载中
    1. [1]

      Ren M Y, Lu X L, Chai Y R, Zhou X M, Ren J, Zheng Q J, Lin D M. A Three-Dimensional Conductive Cross-Linked All-Carbon Network Hybrid as a Sulfur Host for High Performance Lithium-Sulfur Batteries[J]. J. Colloid Interface Sci., 2019,552:91-100. doi: 10.1016/j.jcis.2019.05.042

    2. [2]

      Ren J, Zhou Y B, Wu H L, Xie F Y, Xu C G, Lin D M. Sulfur-Encapsulated in Heteroatom-Doped Hierarchical Porous Carbon Derived from Goat Hair for High Performance Lithium-Sulfur Batteries[J]. J. Energy Chem., 2019,30:121-131. doi: 10.1016/j.jechem.2018.01.015

    3. [3]

      Xing L B, Xi K, Li Q Y, Su Z, Lai C, Zhao X S, Kumar R V. Nitrogen, Sulfur-Codoped Graphene Sponge as Electroactive Carbon Interlayer for High-Energy and Power Lithium-Sulfur Batteries[J]. J. Power Sources, 2016,303:22-28. doi: 10.1016/j.jpowsour.2015.10.097

    4. [4]

      Wu H W, Huang Y, Zong M, Fu H T, Sun X. Self-Assembled Graphene/Sulfur Composite as High Current Discharge Cathode for Lithium-Sulfur Batteries[J]. Electrochim. Acta, 2015,163:24-31. doi: 10.1016/j.electacta.2015.02.131

    5. [5]

      PAN P F, CHEN P, FANG Y N, SHAN Q, CHEN N N, FENG X M, LIU R Q, LI P, MA Y W. V2O5 Hollow Spheres as High Efficient Sulfur Host for Li-S Batteries[J]. Chinese J. Inorg. Chem., 2020,36(3):575-583.  

    6. [6]

      Wu H W, Huang Y, Zhang W C, Sun X, Yang Y W, Wang L, Zong M. Lock of Sulfur with Carbon Black and a Three-Dimensional Graphene@Carbon Nanotubes Coated Separator for Lithium-Sulfur Batteries[J]. J. Alloys Compd., 2017,708:743-750. doi: 10.1016/j.jallcom.2017.03.047

    7. [7]

      Peng H J, Xu W T, Zhu L, Wang D W, Huang J Q, Cheng X B, Yuan Z, Wei F, Zhang Q. 3D Carbonaceous Current Collectors: The Origin of Enhanced Cycling Stability for High-Sulfur-Loading Lithium-Sulfur Batteries[J]. Adv. Funct. Mater., 2016,26:6351-6358. doi: 10.1002/adfm.201602071

    8. [8]

      Liu X, Huang J Q, Zhang Q, Mai L Q. Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries[J]. Adv. Mater., 2017,291601759. doi: 10.1002/adma.201601759

    9. [9]

      Qiu Y C, Li W F, Li G Z, Hou Y, Zhou L S, Li H F, Liu M N, Ye F M, Yang X W, Zhang Y G. High-Rate, Ultralong Cycle-Life Lithium/Sulfur Batteries Enabled by Nitrogen-Doped Graphene[J]. Nano Res., 2014,7(9):1355-1363. doi: 10.1007/s12274-014-0500-5

    10. [10]

      Yuan C Z, Zhu S Q, Cao H, Hou L R, Lin J D. Hierarchical Sulfur-Impregnated Hydrogenated TiO2 Mesoporous Spheres Comprising Anatase Nanosheets with Highly Exposed (001) Facets for Advanced Li-S Batteries[J]. Nanotechnology, 2016,27045403. doi: 10.1088/0957-4484/27/4/045403

    11. [11]

      Liang X, Kwok C Y, Lodi-Marzano F, Pang Q, Cuisinier M, Huang H, Connor J H, Houtarde D, Kaup K, Sommer H, Brezesinski T, Janek J, Linda F. Lithium-Sulfur Batteries: Tuning Transition Metal Oxide-Sulfur Interactions for Long Life Lithium Sulfur Batteries: The "Goldilocks" Principle[J]. Adv. Energy Mater., 2016,61501636. doi: 10.1002/aenm.201501636

    12. [12]

      Yuan Z, Peng H J, Hou T Z, Huang J Q, Chen C M, Wang D W, Cheng X B, Wei F, Zhang Q. Powering Lithium-Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts[J]. Nano Lett., 2016,16:519-527. doi: 10.1021/acs.nanolett.5b04166

    13. [13]

      Zhang S S, Tran D T. Pyrite FeS2 as an Efficient Adsorbent of Lithium Polysulphide for Improved Lithium-Sulphur Batteries[J]. J. Mater. Chem. A, 2016,4:4371-4374. doi: 10.1039/C6TA01214K

    14. [14]

      Li X L, Chu L B, Wang Y Y, Pan L S. Anchoring Function for Polysulfide Ions of Ultrasmall SnS2 in Hollow Carbon Nanospheres for High Performance Lithium-Sulfur Batteries[J]. Mater. Sci. Eng. B, 2016,205:46-54. doi: 10.1016/j.mseb.2015.12.002

    15. [15]

      Liu Y, Li X C, Liu Y, Kou W, Shen W, He G. Promoting Opposite Diffusion and Efficient Conversion of Polysulfides in "Trap" FexC-Doped Asymmetric Porous Membranes as Integrated Electrodes[J]. Chem. Eng. J., 2020,382122858. doi: 10.1016/j.cej.2019.122858

    16. [16]

      XU J J, LI B, LI S M, LIU J H, YU M. Preparation and Electrochemical Performance of Sulfur/Mesoporous Carbon Composites as Cathodes for Lithium-Sulfur Batteries[J]. Chinese J. Inorg. Chem., 2015,31(10):2030-2036.  

    17. [17]

      ZHAO B, LI N W, LÜ H L, LIN Z X, ZHENG M B. Mesoporous Carbon Nanofiber-Sulfur Cathode for Lithium-Sulfur Batteries[J]. Chinese J. Inorg. Chem., 2014,30(4):733-740.  

    18. [18]

      Song J Y, Lee H H, Hong W G, Huh Y S, Lee Y S, Kim H J, Jun Y S. A Polysulfide-Infiltrated Carbon Cloth Cathode for High-Performance Flexible Lithium-Sulfur Batteries[J]. Nanomaterials, 2018,8(2)90. doi: 10.3390/nano8020090

    19. [19]

      Chai C S, Tan H, Fan X Y, Huang K. MoS2 Nanosheets/Graphitized Porous Carbon Nanofiber Composite: A Dual-Functional Host for High-Performance Lithium-Sulfur Batteries[J]. J. Alloys Compd., 2020,820153144. doi: 10.1016/j.jallcom.2019.153144

    20. [20]

      Xiao X, Li X H, Wang J X, Yan G C, Wang Z X, Guo H J, Liu Y. Robust Assembly of Urchin-like NiCo2O4/CNTs Architecture as Bifunctional Electrocatalyst in Zn-Air Batteries[J]. Ceram. Int., 2020,46(5):6262-6269. doi: 10.1016/j.ceramint.2019.11.096

    21. [21]

      Sun S M, Li S D, Wang S, Li Y N, Han L F, Kong H J, Wang P Y. Fabrication of Hollow NiCo2O4 Nanoparticle/Graphene Composite for Supercapacitor Electrode[J]. Mater. Lett., 2016,182:23-26. doi: 10.1016/j.matlet.2016.06.063

    22. [22]

      Su Y Z, Xu Q Z, Zhong Q S, Shi S T, Zhang C J, Xu C W. NiCo2O4/C Prepared by One-Step Intermittent Microwave Heating Method for Oxygen Evolution Reaction in Splitter[J]. J. Alloys Compd., 2014,617:115-119. doi: 10.1016/j.jallcom.2014.07.195

    23. [23]

      Wang H W, Hu Z A, Chang Y Q, Chen Y L, Wu H Y, Zhang Z Y, Yang Y Y. Design and Synthesis of NiCo2O4-Reduced Graphene Oxide Composites for High Performance Supercapacitors[J]. Chem. Mater., 2011,2110504. doi: 10.1039/c1jm10758e

    24. [24]

      Zou Q L, Lu Y C. Solvent-Dictated Lithium Sulfur Redox Reactions: An Operando UV-Vis Spectroscopic Study[J]. J. Phys. Chem. Lett., 2016,7(8):1518-1525. doi: 10.1021/acs.jpclett.6b00228

    25. [25]

      Gou J, Zhang H Z, Yang X F, Chen Y Q, Yu Y, Li X F, Zhang H M. Quasi-Stable Electroless Ni-P Deposition: A Pivotal Strategy to Create Flexible Li-S Pouch Batteries with Bench Mark Cycle Stability and Specific Capacity[J]. Adv. Funct. Mater., 2018,28(8)1707272.

    26. [26]

      Li G X, Sun J H, Hou W P, Jiang S D, Huang Y, Geng J X. Three-Dimensional Porous Carbon Composites Containing High Sulfur Nanoparticle Content for High-Performance Lithium-Sulfur Batteries[J]. Nat. Commun., 2016,7(1)10601. doi: 10.1038/ncomms10601

    27. [27]

      Song R S, Wang B, Ruan T T, Wang L, Luo H, Wang F, Gao T T, Wang D L. A Three-Dimensional Cathode Matrix with Bi-Confinement Effect of Polysulfide for Lithium-Sulfur Battery[J]. Appl. Surf. Sci., 2018,427:396-404.  

    28. [28]

      Ma X Z, Jin B, Xin P M, Wang H H. Multiwalled Carbon Nanotubes-Sulfur Composites with Enhanced Electrochemical Performance for Lithium/Sulfur Batteries[J]. Appl. Surf. Sci., 2014,307:346-350. doi: 10.1016/j.apsusc.2014.04.036

    29. [29]

      Xiao Z B, Yang Z, Wang L, Nie H G, Zhong M E, Lai Q T, Xu X J, Zhang L J, Huang S M. A Lightweight TiO2/Graphene Interlayer, Applied as a Highly Effective Polysulfide Absorbent for Fast, Long-Life Lithium-Sulfur Batteries[J]. Adv. Mater., 2015,27(18):2891-2898. doi: 10.1002/adma.201405637

    30. [30]

      Nayak P K, Grinblat J, Levi M, Haik O, Levi E, Sun Y K, Munichandraiah N, Aurbach D. Improved Capacity and Stability of Integrated Li and Mn Rich Layered-Spinel Li1.17Ni0.25Mn1.08O3 Cathodes for Li-Ion Batteries[J]. J. Mater. Chem. A, 2015,3:14598-14608.

    31. [31]

      ZHENG Z, GUO X D, WU Z G, XIANG W, HUA W B, ZHONG B H, YANG X S. Preparation of Carbon-Coated LiNi1/3Co1/3Mn1/3O2 Cathode for High-Rate Lithium Ion Batteries[J]. Chinese J. Inorg. Chem., 2017,33(1):106-114.  

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    6. [6]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    7. [7]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    12. [12]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    15. [15]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(5)
  • Abstract views(844)
  • HTML views(250)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return