Citation: Nan SHEN, Yong SHEN, Hong PAN, Li-Hui XU, Kai LI, Zhe-Wei NI, Kai NI, Hang-Li LING. Preparation and Photocatalytic Properties of Cu-Doped BiVO4 Catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(10): 1839-1846. doi: 10.11862/CJIC.2021.214 shu

Preparation and Photocatalytic Properties of Cu-Doped BiVO4 Catalyst

  • Corresponding author: Yong SHEN, shenyong@sues.edu.cn
  • Received Date: 1 June 2021
    Revised Date: 7 August 2021

Figures(8)

  • BiVO4 photocatalytic materials with different Cu doping amounts were prepared by hydrothermal method at 180℃ via Cu(NO3)2·3H2O as the copper source, and exhibited enhanced photocatalytic performance under visible light. The samples were characterized and analyzed by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, UV-Vis absorption spectroscopy, photoluminescence spectra and electrochemical impedance spectroscopy. The photocatalytic activity of rhodamine B (RhB) dye was evaluated under the irradiation of 500 W Xe lamp to simulate the visible light. The results suggest that the Cu doping can not only alter the morphology of BiVO4, but also influence the photocatalytic activity of BiVO4. The visible light absorption of BiVO4 doped with mass ratio of 1% Cu was significantly enhanced in the range of 500~800 nm. This catalyst can achieve the optimum photocatalytic activity for the degradation of RhB (10 mg·L-1) with degradation rate of 81.6%, which was nearly 20% higher than that of pure BiVO4 prepared under the same conditions.
  • 加载中
    1. [1]

      Ullah S, Ferreira-Neto E P, Hazra C, Parveen R, Ribeiro S J L, Calegaro M L, Serge-Correales Y E. Appl. Catal. B, 2019, 243: 121-135  doi: 10.1016/j.apcatb.2018.09.091

    2. [2]

      Wei Y, Zhang Y W, Geng W, Su H R, Long M C. Appl. Catal. B, 2019, 259: 118084  doi: 10.1016/j.apcatb.2019.118084

    3. [3]

      Li C X, Che H N, Liu C B, Che G B, Charpentier P A, Xu W Z, Wang X Y, Liu L H. J. Taiwan Inst. Chem. Eng. , 2018, 95: 669-681

    4. [4]

      Wu Z B, Yuan X Z, Zeng G M, Jiang L B, Zhong H, Xie Y, C, Wang H, Chen X H, Wang H. Appl. Catal. B, 2018, 225: 8-21  doi: 10.1016/j.apcatb.2017.11.040

    5. [5]

      ZHU J X, XIONG Y H, GUO Y. Inorganic Chemicals Industry, 2020, 52(3): 23-27
       

    6. [6]

      LU C L, ZHANG Y F, WANG H L. Journal of Hubei Polytechnic University, 2019(6): 11-14
       

    7. [7]

      Zhao W, Feng Y, Huang H B, Zhou P C, Li J, Zhang L L, Dai B L, Xu J M, Zhu F X, Sheng N, Leung D Y C. Appl. Catal. B, 2019, 245: 448-458  doi: 10.1016/j.apcatb.2019.01.001

    8. [8]

      Li W, Chen J F, Guo R T, Wu J M, Zhou X S, Luo J. J. Mater. Sci. : Mater. Electron. , 2017, 28(21): 1-13

    9. [9]

      Zhou F Q, Fan J C, Xu Q J, Min Y L. Appl. Catal. B, 2017, 201: 77-83  doi: 10.1016/j.apcatb.2016.08.027

    10. [10]

      Wu L J, Wang L, Zhu J, Sun M, Liu X H, Schmuki P, Zhang J. J. Mater. Chem. A, 2020, 8(5): 2563-2570  doi: 10.1039/C9TA13122A

    11. [11]

      Wang Y L, Yu D, Wang W, Gao P, Zhong S, Zhang L S, Zhao Q Q, Liu B J. Sep. Purif. Technol. , 2020, 239: 116562  doi: 10.1016/j.seppur.2020.116562

    12. [12]

      Zhou B, Zhao X, Liu H J, Qu J H, Huang C P. Sep. Purif. Technol. , 2011, 77(3): 275-282  doi: 10.1016/j.seppur.2010.12.017

    13. [13]

      Wang M, Han J, Lv C M, Zhang Y, You M Y, Liu T Y, Li S L, Zhu T. J. Alloys Compd. , 2018, 753: 465-474  doi: 10.1016/j.jallcom.2018.04.068

    14. [14]

      Ge L. J. Mol. Catal. A: Chem. , 2008, 282(1/2): 62-66

    15. [15]

      Zambrano-Robledo P, Vazquez-Arenas J, Romero-Ibrra I, Ostos C, Peral J. Appl. Surf. Sci. , 2019, 487: 743-754  doi: 10.1016/j.apsusc.2019.05.041

    16. [16]

      Ge L. Mater. Chem. Phys. , 2008, 107(2/3): 465-470

    17. [17]

      Chen P. J. Mater. Sci. : Mater. Electron. , 2016, 27(3): 2394-2403  doi: 10.1007/s10854-015-4037-5

    18. [18]

      Regmi C, Kshetri Y K, Kim T, Pandey R P, Ray S K, Lee S W. Appl. Surf. Sci. , 2017, 475: 253-265

    19. [19]

      Li H B, Zhang J, Huang G Y, Fu S H, Ma C, Wang B Y, Huang Q R, Liao H W. Trans. Nonferrous Met. Soc. China, 2017, 27(4): 868-875  doi: 10.1016/S1003-6326(17)60102-X

    20. [20]

      Geng Y L, Zhang P, Li N, Sun Z H. J. Alloys Compd. , 2015, 651: 744-748  doi: 10.1016/j.jallcom.2015.08.123

    21. [21]

      Shan L W, Liu H G, Wang G L. J. Nanopart. Res. , 2015, 17(4): 1-11

    22. [22]

      Gu S N, Li W J, Wang F Z, Li H D, Zhou H L. Catal. Sci. Technol. , 2016, 6(6): 1870-1881  doi: 10.1039/C5CY01412C

    23. [23]

      Merupo V I, Velumani S, Ordon K, Errien N, Szade J, Kassiba A H. CrystEngComm, 2015, 17(17): 3366-3375  doi: 10.1039/C5CE00173K

    24. [24]

      Liu X L, Xu L Y, Zhou G S, Liu Q, Lu Z, Song M S, Han S. J. Taiwan Inst. Chem. Eng. , 2020, 117: 48-55  doi: 10.1016/j.jtice.2020.11.028

    25. [25]

      Cui J W, Wang G H, Liu W, Ke P, Tian Y, Li X, Tian Y S. Fuel, 2021, 290: 120066  doi: 10.1016/j.fuel.2020.120066

    26. [26]

      Che H N, Chen J B, Huang K, Hu W, Hu H, Liu X T, Che G B, Liu C B, Shi W D. J. Alloys Compd. , 2016, 688: 882-890  doi: 10.1016/j.jallcom.2016.07.311

    27. [27]

      Wang Z L, Lv J L, Zhang J F, Dai K, Liang C H. Appl. Surf. Sci. , 2017, 430(1): 595-602

    28. [28]

      Jo W J, Jang J W, Kong K J, Kang H J, Kim J Y, Jun H, Parmar K P S, Lee J S. Angew. Chem. Int. Ed. , 2012, 51(13): 3147-3151  doi: 10.1002/anie.201108276

    29. [29]

      Xia T, Chen M, Xiao L S, Fan W Q, Mao B D, Xu D B, Guan P, Zhu J J, Shi W D. J. Taiwan Inst. Chem. Eng. , 2018, 93: 582-589

    30. [30]

      Tang C N, Liu E Z, Wan J, Hu X Y, Fan J. Appl. Catal. B, 2016, 181: 707-715

    31. [31]

      Palaniswamy V K, Ramasamy B, Manoharan K, Raman K, Sundaram R. Chem. Phys. Lett. , 2021, 771(9): 138531

    32. [32]

      Wang Y L, Yu D, Wang W, Gao P, Zhang L S, Zhong S, Liu B J. Colloids Surf. A, 2019, 578: 123608

  • 加载中
    1. [1]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    2. [2]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    15. [15]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    16. [16]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    17. [17]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(10)
  • Abstract views(945)
  • HTML views(236)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return