Citation: Yong-Sheng CHEN, Jian-Fei ZHENG, Si-Long ZHU, Meng-Yang XIONG, Long-Hui NIE. One-Step Hydrothermal Preparation and Performance of BiOBr/BiPO4 p-n Heterojunction Photocatalyst[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(10): 1828-1838. doi: 10.11862/CJIC.2021.213 shu

One-Step Hydrothermal Preparation and Performance of BiOBr/BiPO4 p-n Heterojunction Photocatalyst

Figures(12)

  • BiOBr/BiPO4 p-n heterojunction composite photocatalyst was successfully prepared by one-step hydrothermal method. The physical properties of the samples were characterized by X-ray powder diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), N2 adsorption-desorption isotherm, X-ray photoelectron spectroscopy (XPS) and UV-Vis diffuse reflection spectrum (UV-Vis DRS). The photocatalytic activity of the sample was evaluated by degradation of rhodamine B under visible light irradiation (λ > 420 nm), and the effect of BiPO4 content on the photocatalytic activity of the prepared materials was investigated. The main active species in the photocatalytic reaction were determined by capturing experiment, and the photocatalytic mechanism was proposed. The results showed that the optimum molar content of BiPO4 was 10%, and the optimal catalyst showed the best photocatalytic activity with the reaction rate constant of 0.14 min-1, which was about 3.7 times that of pure BiOBr. And it also exhibited amostly unchanged photocatalytic activity after three cycling experiments. The improvement of catalytic activity is mainly due to the formation of BiPO4/BiOBr heterojunction, which improves the separation efficiency of photo-generated carriers. In addition, the enhanced adsorption capacity of pollutants promotes the improvement of catalytic activity. The hole and superoxide radical are the main active species in the photocatalytic process, and the order of the role of the three species is hole > superoxide radical > hydroxyl radical.
  • 加载中
    1. [1]

      Chen Y G, Zhao S, Wang X, Peng Q, Lin R, Wang Y, Shen R G, Cao X, Zhang L B, Zhang G, Zhou G, Li J, Xia A D, Li Y D. J. Am. Chem. Soc. , 2016, 138(13): 4286-4289  doi: 10.1021/jacs.5b12666

    2. [2]

      Zhu S Y, Liang S J, Wang Y, Zhang X Y, Li F Y, Lin H X, Zhang Z Z, Wang X X. Appl. Catal. B, 2016, 187: 11-18  doi: 10.1016/j.apcatb.2016.01.002

    3. [3]

      YUAN H, LIU L F. Chinese J. Inorg. Chem. , 2016, 32(2): 216-222
       

    4. [4]

      LI Y W, HUANG C X, TAO W, QIAN H S. Chinese J. Inorg. Chem. , 2017, 33(3): 361-376
       

    5. [5]

      Wang X B, Liu J, Leong S, Lin X C, Wei J, Kong B, Xu Y F, Low Z X, Yao J F, Wang H T. ACS Appl. Mater. Interfaces, 2016, 8: 9080-9087  doi: 10.1021/acsami.6b00028

    6. [6]

      Wang W N, Huang C X, Zhang C Y, Zhao M L, Zhang J, Chen H J, Zha Z B, Zhao T T, Qian H S. Appl. Catal. B, 2018, 224: 854-862  doi: 10.1016/j.apcatb.2017.11.037

    7. [7]

      MA X S, CHEN F Y, YU C L, YANG K, HUANG W Y, LI S Y. Chinese J. Inorg. Chem. , 2020, 36(2): 217-225
       

    8. [8]

      WANG Z H, CAI Q Y, YE T M, GUO Y N, GENG Z, YANG X, YU H B. Chinese J. Inorg. Chem. , 2017, 33(7): 1196-1204
       

    9. [9]

      DENG J Y, WANG J, ZHU S L, NIE L H. Chinese J. Inorg. Chem. , 2019, 35(6): 955-964
       

    10. [10]

      Deng J Y, Zhu S L, Zheng J F, Nie L H. J. Colloid Interface Sci. , 2020, 569: 320-331  doi: 10.1016/j.jcis.2020.02.100

    11. [11]

      He F, Meng A Y, Cheng B, Ho W K, Yu J G. Chin. J. Catal. , 2020, 41: 9-20  doi: 10.1016/S1872-2067(19)63382-6

    12. [12]

      Wang Y J, Li Y, Cao S W, Yu J G. Chin. J. Catal. , 2019, 40: 867-874  doi: 10.1016/S1872-2067(19)63343-7

    13. [13]

      Xia P, Antonietti M, Zhu B C, Heil T, Yu J G, Cao S W. Adv. Funct. Mater. , 2019, 29(15): 1900093  doi: 10.1002/adfm.201900093

    14. [14]

      Cao S W, Shen B J, Tong T, Fu J W, Yu J G. Adv. Funct. Mater. , 2018, 28(21): 1800136  doi: 10.1002/adfm.201800136

    15. [15]

      DENG J Y, NIE L H, WANG J, ZHU S L, HU B, TAN J J, SUN D. J. Chin. Ceram. Soc. , 2019, 47(7): 1023-1032
       

    16. [16]

      NIE L H, HUANG Z Q, XU H T, ZHANG W X, YANG B R, FANG L, LI S H. Chin. J. Catal. , 2012, 33: 1209-1216
       

    17. [17]

      Mi Y W, Li H P, Zhang Y F, Du N, Hou W G. Catal. Sci. Technol. , 2018, 8: 2588-2597  doi: 10.1039/C8CY00143J

    18. [18]

      Wu D, Ye L Q, Yue S T, Wang B, Wang W, Yip H Y, Wong P K. J. Phys. Chem. C, 2016, 120: 7715-7727  doi: 10.1021/acs.jpcc.6b02365

    19. [19]

      Han A J, Zhang H W, Chuah G K, Jaenicke S. Appl. Catal. B, 2017, 219: 269-275  doi: 10.1016/j.apcatb.2017.07.050

    20. [20]

      Tong X Q, Cao X, Han T, Cheong W C, Lin R, Chen Z, Wang D S, Chen C, Peng Q, Li Y D. Nano Res. , 2019, 12: 1625-1630  doi: 10.1007/s12274-018-2404-x

    21. [21]

      Wang H, Yong D Y, Chen S C, Jiang S L, Zhang X D, Shao W, Zhang Q, Yan W S, Pan B C, Xie Y. J. Am. Chem. Soc. , 2018, 140: 1760-1766  doi: 10.1021/jacs.7b10997

    22. [22]

      Khampuanbut A, Santalelat S, Pankiew A, Pankiew A, Channei D, Pornsuwan S, Faungnawakij K, Phanichphant S, Inceesungvorn B. J. Colloid Interface Sci. , 2020, 560: 213-224  doi: 10.1016/j.jcis.2019.10.057

    23. [23]

      Hu X L, Li C Q, Song J Y, Zheng S L, Sun Z M. J. Colloid Interface Sci. , 2020, 574: 61-73  doi: 10.1016/j.jcis.2020.04.035

    24. [24]

      QIANG L N, HU X M, PEI S L, CHEN D Y, LI G S. Applied Chemi-cal Industry, 2018, 47(5): 1023-1025  doi: 10.3969/j.issn.1671-3206.2018.05.043

    25. [25]

      Naciri Y, Hsini A, Ajmal Z, Navío J A, Bakiz1 B, Albourine1 A, Ezahri1 M, Benlhachemi A. Adv. Colloid Interface Sci. , 2020, 280: 102160  doi: 10.1016/j.cis.2020.102160

    26. [26]

      An W J, Cui W Q, Liang Y H, Hu J S, Liu L. Appl. Surf. Sci. , 2015, 351: 1131-1139  doi: 10.1016/j.apsusc.2015.06.098

    27. [27]

      Jia X M, Cao J, Lin H L, Zhang M Y, Guo X M, Chen S F. RSC Adv. , 2016, 6: 55755-55763  doi: 10.1039/C6RA06330F

    28. [28]

      Zhao H J, Wu R J, Wang X C, An Y M, Zhao W X, Ma F. J. Chin. Chem. Soc. , 2019, 67(6): 1-8

    29. [29]

      Zou X J, Dong Y Y, Zhang X D, Cui Y B, Ou X X, Qi X H. Appl. Surf. Sci. , 2017, 391: 525-534  doi: 10.1016/j.apsusc.2016.06.003

    30. [30]

      Dong H J, Cao Z Z, Shao R Y, Xiao Y, He W Y, Gao Y F, Liu J R. RSC Adv. , 2015, 5: 63930-63935  doi: 10.1039/C5RA08421K

    31. [31]

      Xu L, Jiang D S, Zhao Y, Yan P C, Dong J T, Qian J C, Ao H Q, Li J W, Yan C, Li H N. Dalton Trans. , 2018, 47: 13353-13359  doi: 10.1039/C8DT02687D

    32. [32]

      Gao M C, Zhang D F, Pu X P, Ma H Y, Su C H, Gao X, Dou J M. Sep. Purif. Technol. , 2016, 170: 183-189  doi: 10.1016/j.seppur.2016.06.045

    33. [33]

      Wu Z, Liu J, Tian Q Y, Wu W. ACS Sustainable Chem. Eng. , 2017, 5: 5008-5017  doi: 10.1021/acssuschemeng.7b00412

    34. [34]

      Liu Z S, Wu B T, Niu J N, Feng P Z, Zhu Y B. Mater. Res. Bull. , 2015, 63: 187-193  doi: 10.1016/j.materresbull.2014.12.020

    35. [35]

      Juntrapirom S, Anuchai S, Thongsook O, Pornsuwand S, Meepowpan P, Thavornyutikarn P, Phanichphant S, Tantraviwate D, Inceesungvorn B. Chem. Eng. J. , 2020, 394: 124934  doi: 10.1016/j.cej.2020.124934

    36. [36]

      Wang Y J, Guan X F, Li L P, Li G S. CrystEngComm, 2012, 14: 7907-7914  doi: 10.1039/c2ce25337b

    37. [37]

      Long D, Chen Z Q, Rao X, Zhang Y P. ACS Appl. Energy Mater. , 2020, 3: 5024-5030  doi: 10.1021/acsaem.0c00555

    38. [38]

      Thommes M, Kaneko L, Neimark A V, Olivier J P, Rodriguez-Reinoso P, Rouquerol J, Sing K S W. Pure Appl. Chem. , 2015, 87: 1051-1069  doi: 10.1515/pac-2014-1117

    39. [39]

      Li X B, Xiong J, Gao X M, Ma J, Chen Z, Kang B B, Liu J Y, Li H, Feng Z J, Huang J T. J. Hazard. Mater. , 2020, 387: 121690  doi: 10.1016/j.jhazmat.2019.121690

    40. [40]

      Peng Y, Yan M, Chen Q G, Fan C M, Zhou H Y, Xu A W. J. Mater. Chem. A, 2014, 2: 8517-8524  doi: 10.1039/C4TA00274A

  • 加载中
    1. [1]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    2. [2]

      Xiaofan ZHANGYu DUANMeijie SHINan LURenhong LIXiaoqing YAN . Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Jin ZHANGYuting WANGBin YUYuxin ZHONGYufeng ZHANG . Corn straw-derived carbon/BiOBr composite: Synthesis and photocatalytic degradation performance for rhodamine B. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1397-1408. doi: 10.11862/CJIC.20250028

    5. [5]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    6. [6]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    7. [7]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    8. [8]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    9. [9]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    10. [10]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    11. [11]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    12. [12]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    15. [15]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    16. [16]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    18. [18]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    19. [19]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    20. [20]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

Metrics
  • PDF Downloads(30)
  • Abstract views(3654)
  • HTML views(1124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return