Citation: Yong-Sheng CHEN, Jian-Fei ZHENG, Si-Long ZHU, Meng-Yang XIONG, Long-Hui NIE. One-Step Hydrothermal Preparation and Performance of BiOBr/BiPO4 p-n Heterojunction Photocatalyst[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(10): 1828-1838. doi: 10.11862/CJIC.2021.213 shu

One-Step Hydrothermal Preparation and Performance of BiOBr/BiPO4 p-n Heterojunction Photocatalyst

Figures(12)

  • BiOBr/BiPO4 p-n heterojunction composite photocatalyst was successfully prepared by one-step hydrothermal method. The physical properties of the samples were characterized by X-ray powder diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), N2 adsorption-desorption isotherm, X-ray photoelectron spectroscopy (XPS) and UV-Vis diffuse reflection spectrum (UV-Vis DRS). The photocatalytic activity of the sample was evaluated by degradation of rhodamine B under visible light irradiation (λ > 420 nm), and the effect of BiPO4 content on the photocatalytic activity of the prepared materials was investigated. The main active species in the photocatalytic reaction were determined by capturing experiment, and the photocatalytic mechanism was proposed. The results showed that the optimum molar content of BiPO4 was 10%, and the optimal catalyst showed the best photocatalytic activity with the reaction rate constant of 0.14 min-1, which was about 3.7 times that of pure BiOBr. And it also exhibited amostly unchanged photocatalytic activity after three cycling experiments. The improvement of catalytic activity is mainly due to the formation of BiPO4/BiOBr heterojunction, which improves the separation efficiency of photo-generated carriers. In addition, the enhanced adsorption capacity of pollutants promotes the improvement of catalytic activity. The hole and superoxide radical are the main active species in the photocatalytic process, and the order of the role of the three species is hole > superoxide radical > hydroxyl radical.
  • 加载中
    1. [1]

      Chen Y G, Zhao S, Wang X, Peng Q, Lin R, Wang Y, Shen R G, Cao X, Zhang L B, Zhang G, Zhou G, Li J, Xia A D, Li Y D. J. Am. Chem. Soc. , 2016, 138(13): 4286-4289  doi: 10.1021/jacs.5b12666

    2. [2]

      Zhu S Y, Liang S J, Wang Y, Zhang X Y, Li F Y, Lin H X, Zhang Z Z, Wang X X. Appl. Catal. B, 2016, 187: 11-18  doi: 10.1016/j.apcatb.2016.01.002

    3. [3]

      YUAN H, LIU L F. Chinese J. Inorg. Chem. , 2016, 32(2): 216-222
       

    4. [4]

      LI Y W, HUANG C X, TAO W, QIAN H S. Chinese J. Inorg. Chem. , 2017, 33(3): 361-376
       

    5. [5]

      Wang X B, Liu J, Leong S, Lin X C, Wei J, Kong B, Xu Y F, Low Z X, Yao J F, Wang H T. ACS Appl. Mater. Interfaces, 2016, 8: 9080-9087  doi: 10.1021/acsami.6b00028

    6. [6]

      Wang W N, Huang C X, Zhang C Y, Zhao M L, Zhang J, Chen H J, Zha Z B, Zhao T T, Qian H S. Appl. Catal. B, 2018, 224: 854-862  doi: 10.1016/j.apcatb.2017.11.037

    7. [7]

      MA X S, CHEN F Y, YU C L, YANG K, HUANG W Y, LI S Y. Chinese J. Inorg. Chem. , 2020, 36(2): 217-225
       

    8. [8]

      WANG Z H, CAI Q Y, YE T M, GUO Y N, GENG Z, YANG X, YU H B. Chinese J. Inorg. Chem. , 2017, 33(7): 1196-1204
       

    9. [9]

      DENG J Y, WANG J, ZHU S L, NIE L H. Chinese J. Inorg. Chem. , 2019, 35(6): 955-964
       

    10. [10]

      Deng J Y, Zhu S L, Zheng J F, Nie L H. J. Colloid Interface Sci. , 2020, 569: 320-331  doi: 10.1016/j.jcis.2020.02.100

    11. [11]

      He F, Meng A Y, Cheng B, Ho W K, Yu J G. Chin. J. Catal. , 2020, 41: 9-20  doi: 10.1016/S1872-2067(19)63382-6

    12. [12]

      Wang Y J, Li Y, Cao S W, Yu J G. Chin. J. Catal. , 2019, 40: 867-874  doi: 10.1016/S1872-2067(19)63343-7

    13. [13]

      Xia P, Antonietti M, Zhu B C, Heil T, Yu J G, Cao S W. Adv. Funct. Mater. , 2019, 29(15): 1900093  doi: 10.1002/adfm.201900093

    14. [14]

      Cao S W, Shen B J, Tong T, Fu J W, Yu J G. Adv. Funct. Mater. , 2018, 28(21): 1800136  doi: 10.1002/adfm.201800136

    15. [15]

      DENG J Y, NIE L H, WANG J, ZHU S L, HU B, TAN J J, SUN D. J. Chin. Ceram. Soc. , 2019, 47(7): 1023-1032
       

    16. [16]

      NIE L H, HUANG Z Q, XU H T, ZHANG W X, YANG B R, FANG L, LI S H. Chin. J. Catal. , 2012, 33: 1209-1216
       

    17. [17]

      Mi Y W, Li H P, Zhang Y F, Du N, Hou W G. Catal. Sci. Technol. , 2018, 8: 2588-2597  doi: 10.1039/C8CY00143J

    18. [18]

      Wu D, Ye L Q, Yue S T, Wang B, Wang W, Yip H Y, Wong P K. J. Phys. Chem. C, 2016, 120: 7715-7727  doi: 10.1021/acs.jpcc.6b02365

    19. [19]

      Han A J, Zhang H W, Chuah G K, Jaenicke S. Appl. Catal. B, 2017, 219: 269-275  doi: 10.1016/j.apcatb.2017.07.050

    20. [20]

      Tong X Q, Cao X, Han T, Cheong W C, Lin R, Chen Z, Wang D S, Chen C, Peng Q, Li Y D. Nano Res. , 2019, 12: 1625-1630  doi: 10.1007/s12274-018-2404-x

    21. [21]

      Wang H, Yong D Y, Chen S C, Jiang S L, Zhang X D, Shao W, Zhang Q, Yan W S, Pan B C, Xie Y. J. Am. Chem. Soc. , 2018, 140: 1760-1766  doi: 10.1021/jacs.7b10997

    22. [22]

      Khampuanbut A, Santalelat S, Pankiew A, Pankiew A, Channei D, Pornsuwan S, Faungnawakij K, Phanichphant S, Inceesungvorn B. J. Colloid Interface Sci. , 2020, 560: 213-224  doi: 10.1016/j.jcis.2019.10.057

    23. [23]

      Hu X L, Li C Q, Song J Y, Zheng S L, Sun Z M. J. Colloid Interface Sci. , 2020, 574: 61-73  doi: 10.1016/j.jcis.2020.04.035

    24. [24]

      QIANG L N, HU X M, PEI S L, CHEN D Y, LI G S. Applied Chemi-cal Industry, 2018, 47(5): 1023-1025  doi: 10.3969/j.issn.1671-3206.2018.05.043

    25. [25]

      Naciri Y, Hsini A, Ajmal Z, Navío J A, Bakiz1 B, Albourine1 A, Ezahri1 M, Benlhachemi A. Adv. Colloid Interface Sci. , 2020, 280: 102160  doi: 10.1016/j.cis.2020.102160

    26. [26]

      An W J, Cui W Q, Liang Y H, Hu J S, Liu L. Appl. Surf. Sci. , 2015, 351: 1131-1139  doi: 10.1016/j.apsusc.2015.06.098

    27. [27]

      Jia X M, Cao J, Lin H L, Zhang M Y, Guo X M, Chen S F. RSC Adv. , 2016, 6: 55755-55763  doi: 10.1039/C6RA06330F

    28. [28]

      Zhao H J, Wu R J, Wang X C, An Y M, Zhao W X, Ma F. J. Chin. Chem. Soc. , 2019, 67(6): 1-8

    29. [29]

      Zou X J, Dong Y Y, Zhang X D, Cui Y B, Ou X X, Qi X H. Appl. Surf. Sci. , 2017, 391: 525-534  doi: 10.1016/j.apsusc.2016.06.003

    30. [30]

      Dong H J, Cao Z Z, Shao R Y, Xiao Y, He W Y, Gao Y F, Liu J R. RSC Adv. , 2015, 5: 63930-63935  doi: 10.1039/C5RA08421K

    31. [31]

      Xu L, Jiang D S, Zhao Y, Yan P C, Dong J T, Qian J C, Ao H Q, Li J W, Yan C, Li H N. Dalton Trans. , 2018, 47: 13353-13359  doi: 10.1039/C8DT02687D

    32. [32]

      Gao M C, Zhang D F, Pu X P, Ma H Y, Su C H, Gao X, Dou J M. Sep. Purif. Technol. , 2016, 170: 183-189  doi: 10.1016/j.seppur.2016.06.045

    33. [33]

      Wu Z, Liu J, Tian Q Y, Wu W. ACS Sustainable Chem. Eng. , 2017, 5: 5008-5017  doi: 10.1021/acssuschemeng.7b00412

    34. [34]

      Liu Z S, Wu B T, Niu J N, Feng P Z, Zhu Y B. Mater. Res. Bull. , 2015, 63: 187-193  doi: 10.1016/j.materresbull.2014.12.020

    35. [35]

      Juntrapirom S, Anuchai S, Thongsook O, Pornsuwand S, Meepowpan P, Thavornyutikarn P, Phanichphant S, Tantraviwate D, Inceesungvorn B. Chem. Eng. J. , 2020, 394: 124934  doi: 10.1016/j.cej.2020.124934

    36. [36]

      Wang Y J, Guan X F, Li L P, Li G S. CrystEngComm, 2012, 14: 7907-7914  doi: 10.1039/c2ce25337b

    37. [37]

      Long D, Chen Z Q, Rao X, Zhang Y P. ACS Appl. Energy Mater. , 2020, 3: 5024-5030  doi: 10.1021/acsaem.0c00555

    38. [38]

      Thommes M, Kaneko L, Neimark A V, Olivier J P, Rodriguez-Reinoso P, Rouquerol J, Sing K S W. Pure Appl. Chem. , 2015, 87: 1051-1069  doi: 10.1515/pac-2014-1117

    39. [39]

      Li X B, Xiong J, Gao X M, Ma J, Chen Z, Kang B B, Liu J Y, Li H, Feng Z J, Huang J T. J. Hazard. Mater. , 2020, 387: 121690  doi: 10.1016/j.jhazmat.2019.121690

    40. [40]

      Peng Y, Yan M, Chen Q G, Fan C M, Zhou H Y, Xu A W. J. Mater. Chem. A, 2014, 2: 8517-8524  doi: 10.1039/C4TA00274A

  • 加载中
    1. [1]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    13. [13]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    15. [15]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    16. [16]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    20. [20]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

Metrics
  • PDF Downloads(22)
  • Abstract views(2273)
  • HTML views(743)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return