Citation: Yi-En DU, Xian-Jun NIU, Wan-Xi LI, Shu-Ya GAO, Yu-Mei LI. Solvothermal Synthesis of High-Reactive Faceted Anatase TiO2 Nanomaterials with Improved Photocatalytic Performance[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(10): 1753-1763. doi: 10.11862/CJIC.2021.211 shu

Solvothermal Synthesis of High-Reactive Faceted Anatase TiO2 Nanomaterials with Improved Photocatalytic Performance

Figures(10)

  • Herein, anatase TiO2 nanoparticles with co-exposed {101}/[111]-facets (ethanoic acid-TiO2 and no control agent-TiO2, namely HAc-TiO2 and NO-TiO2) and co-exposed {101}/{010}/[111]-facets (formic acid-TiO2 and hydrofluoric acid-TiO2, namely FA-TiO2 and HF-TiO2) were prepared by a mild solvothermal method using tetrabutyl titanate as titanium source. The crystal structure, morphology, specific surface area, pore size distribution, optical properties, transformation and recombination of charge carriers (electron and hole) of the samples were characterized. The photocatalytic performance and cycling performance of the samples were also evaluated. The results showed that as-prepared HF-TiO2 with co-exposed {101}/{010}/[111]-facets exhibited the highest photocatalytic activity in the process of photocatalytic degradation of rhodamine B solution (or p-nitrophenol solution), and its degradation efficiency was 97.35% (or 68.57%), which was 1.06 times (or 1.09 times), 1.18 times (or 1.14 times), 1.35 times (or 2.33 times) and 4.88 times (or 5.80 times) of FA-TiO2, HAc-TiO2, BD-TiO2 and NO-TiO2, respectively. The highest photocatalytic activity of HF-TiO2 could be attributed to the synergistic effect of the maximum crystallinity, larger surface energy, superior surface atomic structure and surface electronic structure, lowest photoluminescence intensity, fastest charge transfer rate and minimum carrier recombination rate.
  • 加载中
    1. [1]

      He K, Wen Q K, Wang C W, Wang B X, Yu S S, Hao C C, Chen K Z. Soft Matter, 2017, 13: 7879-7889  doi: 10.1039/C7SM01422H

    2. [2]

      Wang W G, Zhang H Y, Wang R, Feng M, Chen Y M. Nanoscale, 2014, 6: 2390-2396  doi: 10.1039/C3NR05967G

    3. [3]

      Carlucci C, Xu H, Scremin B F, Giannini C, Altamura D, Carlino E, Videtta V, Conciauro F, Gigli G, Ciccarella G. CrystEngComm, 2014, 16: 1817-1824  doi: 10.1039/c3ce41477a

    4. [4]

      Ma Z L, Shi L Y, Qu W W, Hu Q, Chen R F, Wang Y J, Chen Z. RSC Adv., 2020, 10: 43447-43458  doi: 10.1039/D0RA08597A

    5. [5]

      Du Y E, Feng Q, Chen C D, Tanaka Y, Yang X J. ACS Appl. Mater. Interfaces, 2014, 6: 16007-16019  doi: 10.1021/am503914q

    6. [6]

      Nong S Y, Dong C L, Wang Y X, Huang F Q. Nanoscale, 2020, 12: 18429-18436  doi: 10.1039/D0NR04861E

    7. [7]

      Amri F, Septiani N L W, Rezki M, Iqbal M, Yamauchi Y, Golberg D, Kaneti Y V, Yuliarto B. J. Mater. Chem. B, 2021, 9: 1189-1207  doi: 10.1039/D0TB02292F

    8. [8]

      Kubacka A, Fernández-García M, Colón G. Chem. Rev., 2012, 112: 1555-1614

    9. [9]

      Ye L Q, Liu J Y, Jiang Z, Peng T Y, Zan L. Nanoscale, 2013, 5: 9391-9396  doi: 10.1039/c3nr02273k

    10. [10]

      Lazzeri M, Vittadini A, Selloni A. Phys. Rev. B, 2001, 63: 155409  doi: 10.1103/PhysRevB.63.155409

    11. [11]

      Xu H, Reunchan P, Ouyang S X, Tong H, Umezawa N, Kako T. Chem. Mater., 2013, 25(3): 405-411  doi: 10.1021/cm303502b

    12. [12]

      Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M, Lu G Q. Nature, 2008, 453: 638-641  doi: 10.1038/nature06964

    13. [13]

      Wen P H, Itoh H, Tang W P, Feng Q. Langmuir, 2007, 23: 11782-11790  doi: 10.1021/la701632t

    14. [14]

      Yang H G, Liu G, Qiao S Z, Sun C H, Jin Y G, Smith S C, Zou J, Cheng H M, Lu G Q. J. Am. Chem. Soc., 2009, 131: 4078-4083  doi: 10.1021/ja808790p

    15. [15]

      Sun W, Liu H, Hu J C, Li J L. RSC Adv., 2015, 5: 513-520  doi: 10.1039/C4RA13596B

    16. [16]

      Liu M, Li H M, Zeng Y S, Huang T C. Appl. Surf. Sci., 2013, 274: 117-123  doi: 10.1016/j.apsusc.2013.02.125

    17. [17]

      Zhao J, Zou X X, Su J, Wang P P, Zhou L J, Li G D. Dalton Trans., 2013, 42: 4365-4368  doi: 10.1039/c3dt33053b

    18. [18]

      Chen C D, Sewvandi G A, Kusunose T, Tanaka Y, Nakanishi S, Feng Q. CrystEngComm, 2014, 16: 8885-8895  doi: 10.1039/C4CE01250J

    19. [19]

      Du Y E, Niu X J, Li W X, An J, Liu Y F, Chen C D, Wang P F, Yang X J, Feng Q. Materials, 2019, 12: 3614  doi: 10.3390/ma12213614

    20. [20]

      Du Y E, Niu X J, Bai Y, Qi H X, Guo Y Q, Wang P F, Yang X J, Feng Q. ChemistrySelect, 2019, 4: 4443-4457  doi: 10.1002/slct.201900257

    21. [21]

      Du Y E, Niu X J, He J, Liu L, Liu Y F, Chen C D, Yang X J, Feng Q. ACS Omega, 2020, 5: 14147-14156  doi: 10.1021/acsomega.0c01827

    22. [22]

      DU Y E, NIU X J, AN J. Journal of Yunnan University (Natural Sciences Edition), 2020, 42(6): 1147-1158
       

    23. [23]

      He Z Q, Jiang L X, Wang D, Qiu J P, Chen J M, Song S. Ind. Eng. Chem. Res., 2015, 54(3): 808-818  doi: 10.1021/ie503997m

    24. [24]

      Chen D M, Du G X, Zhu Q, Zhou F S. J. Colloid Interface Sci., 2013, 409: 151-157  doi: 10.1016/j.jcis.2013.07.049

    25. [25]

      Ong W J, Tan L L, Chai S P, Yong S T, Mohamed A R. Nanoscale, 2014, 6: 1946-2008  doi: 10.1039/c3nr04655a

    26. [26]

      Yu F, Wang L C, Xing Q J, Wang D K, Jiang X H, Li G C, Zheng A M, Ai F R, Zou J P. Chin. Chem. Lett., 2020, 31: 1648-1653  doi: 10.1016/j.cclet.2019.08.020

    27. [27]

      Sambaza S S, Maity A, Pillay K. ACS Omega, 2020, 5: 29642-29656  doi: 10.1021/acsomega.0c00628

    28. [28]

      Liu X G, Du G R, Li M. ACS Omega, 2019, 4: 14902-14912  doi: 10.1021/acsomega.9b01648

    29. [29]

      Yang L B, Gao P, Lu J H, Guo W, Zhuang Z, Wang Q Q, Li W J, Feng Z Y. RSC Adv., 2020, 10: 20654-20664  doi: 10.1039/D0RA01996H

    30. [30]

      Tu W G, Zhou Y, Liu Q, Tian Z P, Gao J, Chen X Y, Zhang H T, Liu J G, Zou Z G. Adv. Funct. Mater., 2012, 22: 1215-1221  doi: 10.1002/adfm.201102566

    31. [31]

      Jiang Z L, Tang Y X, Tay Q L, Zhang Y Y, Malyi O I, Wang D P, Deng J Y, Lai Y K, Zhou H F, Chen X D, Dong Z L, Chen Z. Adv. Energy Mater., 2013, 3: 1368-1380  doi: 10.1002/aenm.201300380

    32. [32]

      Zhang G Y, Wei X M, Bai X, Liu C M, Wang B Y, Liu J W. Inorg. Chem. Front., 2018, 5: 951-961  doi: 10.1039/C8QI00105G

    33. [33]

      Jiang X H, Zhang L S, Liu H Y, Wu D S, Wu F Y, Tian L, Liu L L, Zou J P, Luo S L, Chen B B. Angew. Chem. Int. Ed., 2020, 59: 23112-23116  doi: 10.1002/anie.202011495

    34. [34]

      Zhu M, Zhang L S, Liu S S, Wang D K, Qin Y C, Chen Y, Dai W L, Wang Y H, Xing Q J, Zou J P. Chin. Chem. Lett., 2020, 31: 1961-1965  doi: 10.1016/j.cclet.2020.01.017

    35. [35]

      Wei X X, Cui B Y, Wang X X, Cao Y Z, Gao L B, Guo S Q, Chen C M. CrystEngComm, 2019, 21: 1750-1757  doi: 10.1039/C8CE02072H

    36. [36]

      Zheng L L, Wang D K, Wu S L, Jiang X H, Zhang J, Xing Q J, Zou J P, Luo S L. J. Mater. Chem. A, 2020, 8: 25425-25430  doi: 10.1039/D0TA10165F

    37. [37]

      Kiatkittipong K, Scott J, Amal R. ACS Appl. Mater. Interfaces, 2011, 3(10): 3988-3996  doi: 10.1021/am2008568

    38. [38]

      Hu D W, Zhang W X, Tanaka Y, Kusunose N, Peng Y G, Feng Q. Cryst. Growth Des., 2015, 15(3): 1214-1225  doi: 10.1021/cg501616k

    39. [39]

      Pan J, Liu G, Lu G Q, Cheng H M. Angew. Chem. Int. Ed., 2011, 50: 2133-2137  doi: 10.1002/anie.201006057

  • 加载中
    1. [1]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    4. [4]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    5. [5]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    6. [6]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    7. [7]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    8. [8]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    9. [9]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    13. [13]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    14. [14]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    16. [16]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(14)
  • Abstract views(1086)
  • HTML views(310)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return