Citation: Hai-Zhi LIU, Zhi-Hao KONG, Xiao-Yan LIN, Peng-Dong LIU, Fa-Hai DONG, Zhen WANG, Guang-Wu WEN. Effect of La, Ce, Yb Doping on Properties of LiNi0.5Mn1.5O4 High Voltage Cathode Materials[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(10): 1782-1792. doi: 10.11862/CJIC.2021.210 shu

Effect of La, Ce, Yb Doping on Properties of LiNi0.5Mn1.5O4 High Voltage Cathode Materials

  • Corresponding author: Guang-Wu WEN, g_wen2016@163.com
  • Received Date: 1 April 2021
    Revised Date: 28 July 2021

Figures(8)

  • High-voltage LiNi0.5Mn1.5O4 cathode materials doped with different rare earth elements were prepared by low temperature combustion method. The effects of different doping ratios (molar ratios of 0.5%, 1%, 2%) and different kinds of rare earth elements (La, Ce, Yb) on the material performance were investigated, and the influence mechanism was explored by X-ray diffraction, Raman spectrum, electron paramagnetic resonance and galvanostatic intermittent titration technique. X-ray diffraction pattern illustrates that rare earth doping can inhibit the generation of LixNi1-xO phase. The inductively coupled plasma spectroscopy illustrates that the doped rare earth elements are basically in accordance with the design proportion. Raman spectrum illustrates that rare earth elements can increase the ordered phase of the material and Ce doped sample has the most ordered phase. In combination with electron paramagnetic resonance oxygen vacancy test, it is found that Ce doped sample induces the increase of the proportion of ordered phase in the material, thus improving the stability of the material. Galvanostatic intermittent titration technique test showed that the diffusion coefficient of Ce-doped LiNi0.5Mn1.5O4 material was about 15 times higher than the undoped sample. In different doping proportion, the material with 1% doping amount had the best performance. Among the samples doping with the best amount of three rare earth elements, Ce doped samples had the best doping performance, and the specific discharge capacity of the first discharge can reach 133.3 mAh·g-1, which was higher than the undoped group and the first discharge efficiency was increased by 18%. After 200 cycles at 1C, the capacity retention rate was 102%, which was 8% higher than the undoped group.
  • 加载中
    1. [1]

      Masias A, Marcicki J, Paxton W A. ACS Energy Lett. , 2021, 6: 621-630  doi: 10.1021/acsenergylett.0c02584

    2. [2]

      Zhu X B, Schulli T, Wang L Z. Chem. Res. Chin. Univ. , 2020, 36(1): 24-32  doi: 10.1007/s40242-020-9103-8

    3. [3]

      Liang G, Peterson V K, See K W, Guo Z, Pang W K. J. Mater. Chem. , 2020, 8(31): 15373-15398  doi: 10.1039/D0TA02812F

    4. [4]

      Li W D, Song B H, Manthiram A. Chem. Soc. Rev. , 2017, 46(10): 3006-3059  doi: 10.1039/C6CS00875E

    5. [5]

      WANG H, BEN L B, LIN M X, CHEN Y Y, HUANG X J. Energy Storage Science and Technology, 2017, 6(5): 841-854
       

    6. [6]

      LI W, ZHOU L, LIU J L. Inorganic Chemicals Industry, 2019, 51(6): 5-10
       

    7. [7]

      Cui X L, Geng T T, Zhang F L, Zhang N S, Zhao D N, Li C L, Li S Y. J. Alloys Compd. , 2020, 820: 153443-153443  doi: 10.1016/j.jallcom.2019.153443

    8. [8]

      Wang L P, Hong L, Huang X J, Baudrin E. Solid State Ionics, 2011, 193(1): 32-38  doi: 10.1016/j.ssi.2011.04.007

    9. [9]

      Gu Y J, Li Y, Chen Y B, Liu H Q. Electrochim. Acta, 2016, 213: 368-374  doi: 10.1016/j.electacta.2016.06.124

    10. [10]

      Hu E, Bak S M, Liu J, Yu X, Zhou Y, Ehrlich S N, Yang X Q, Nam K W. Chem. Mater. , 2013, 26(2): 1108-1118

    11. [11]

      Lee B Y, Chu C T, Krajewski M, Michalska M, Lin J Y. Ceram. Int. , 2020, 46(13): 20856-20864  doi: 10.1016/j.ceramint.2020.05.124

    12. [12]

      Rana J, Glatthaar S, Gesswein H, Sharma N, Binder J R, Chernikov R, Schumacher G, Banhart J. J. Power Sources, 2014, 255: 439-449  doi: 10.1016/j.jpowsour.2014.01.037

    13. [13]

      Amin R, Belharouk I. J. Power Sources, 2017, 348(30): 311-317

    14. [14]

      Lee J, Kim C, Kang B. NPG Asia Mater. , 2015, 7(8): 211-211  doi: 10.1038/am.2015.94

    15. [15]

      Xiao J, Chen X, Sushko P V, Sushko M L, Kovarik L, Feng J, Deng Z, Zheng J, Graff G L, Nie Z, Choi D, Liu J, Zhang J G, Whittingham M S. Adv. Mater. , 2012, 24(16): 2109-2116  doi: 10.1002/adma.201104767

    16. [16]

      Xu X L, Deng S X, Wang H, Liu J B, Yan H. Nano-micro. Lett. , 2017, 9(2): 97-115

    17. [17]

      Wang J F, Chen D, Wu W, Wang L, Liang G C. Trans. Nonferrous Met. Soc. China, 2017, 27(10): 2239-2248  doi: 10.1016/S1003-6326(17)60250-4

    18. [18]

      Wei A J, Li W, Chang Q, Bai X, He R, Zhang L H, Liu Z F, Wang Y. Electrochim. Acta, 2019, 323: 134692  doi: 10.1016/j.electacta.2019.134692

    19. [19]

      Sun P, Ma Y, Zhai T Y, Li H Q. Electrochim. Acta, 2016, 191: 237-246  doi: 10.1016/j.electacta.2016.01.087

    20. [20]

      Bhuvaneswari S, Varadaraju U V, Gopalan R, Prakash R. Electrochim. Acta, 2019, 327: 135008  doi: 10.1016/j.electacta.2019.135008

    21. [21]

      Zong B, Lang Y Q, Yan C H, Deng Z Y, Gong J J, Guo J L, Wang L, Liang G C, Glab C. Mater. Today Commun. , 2020, 24: 101003  doi: 10.1016/j.mtcomm.2020.101003

    22. [22]

      Kocak T F, Wu L Y, Wang J, Savaci U, Turan S, Zhang X G. J. Electroanal. Chem. , 2021, 881(47): 114926

    23. [23]

      Gong J J, Yan S P, Lang Y Q, Zhang Y, Fu S X, Guo J L, Wang L, Liang G C. J. Alloys Compd. , 2021, 859: 157885  doi: 10.1016/j.jallcom.2020.157885

    24. [24]

      Garhi G, Aklalouch M, Favotto C, Mansori M, Saadoune I. J. Electroanal. Chem. , 2020, 873: 114413  doi: 10.1016/j.jelechem.2020.114413

    25. [25]

      Deng M M, Zou B K, Shao Y, Tang Z F, Chen C H. J. Solid State Electrochem. , 2017, 21(6): 1733-1742  doi: 10.1007/s10008-017-3545-z

    26. [26]

      Zhang J N, Sun G, Han Y, Yu F D, Qin X J, Shao G J, Wang Z B. Electrochim. Acta, 2020, 343: 136105  doi: 10.1016/j.electacta.2020.136105

    27. [27]

      Wang H, Tan T A, Yang P, Lai M O, Lu L. J. Phys. Chem. C, 2011, 115(13): 6102-6110  doi: 10.1021/jp110746w

    28. [28]

      Liang G M, Wu Z B, Didier C, Zhang W C, Cuan J, Li B H, Ko K Y, Hung P Y, Lu C Z, Chen Y Z, Leniec G, Kaczmarek S M, Johannessen B, Thomsen L, Peterson V K, Pang W K, Guo Z P. Angew. Chem. Int. Ed. , 2020, 59(26): 10594-10602  doi: 10.1002/anie.202001454

    29. [29]

      Yi T F, Chen B, Zhu Y R, Li X Y, Zhu R S. J. Power Sources, 2014, 247(1): 778-785

    30. [30]

      Yi T F, Xie Y, Zhu Y R, Zhu R S, Ye M F. J. Power Sources, 2012, 211: 59-65  doi: 10.1016/j.jpowsour.2012.03.095

    31. [31]

      Sun H B, Chen Y G, Xu C H, Zhu D, Huang L H. J. Solid State Electrochem. , 2012, 16(3): 1247-1254  doi: 10.1007/s10008-011-1514-5

    32. [32]

      Yang S T, Jia J H, Ding L, Zhang M C. Electrochim. Acta, 2003, 48(5): 569-573  doi: 10.1016/S0013-4686(02)00726-0

    33. [33]

      Liu H W, Zhang K L. Mater. Lett. , 2004, 58(24): 3049-3051  doi: 10.1016/j.matlet.2004.05.040

    34. [34]

      Xu C Q, Tian Y W, Zhai Y C, Liu L Y. Mater. Chem. Phys. , 2006, 98: 532-538  doi: 10.1016/j.matchemphys.2005.09.089

    35. [35]

      Mo M Y, Hui K S, Hong X T, Guo J S, Ye C C, Li A J, Hu N Q, Huang Z Z, Jiang J H, Liang J, Chen H Y. Appl. Surf. Sci. , 2014, 290 (6): 412-418

    36. [36]

      Arumugam D, Kalaignan G P. J. Electroanal. Chem. , 2010, 648(1): 54 -59  doi: 10.1016/j.jelechem.2010.06.021

    37. [37]

      Chen J, Zou G Q, Deng W T, Huang Z D, Gao X, Liu C, Yin S Y, Liu H Q, Deng X L, Tian Y, Li J Y, Wang C W, Wang D, Wu H W, Yang L, Hou H S, Ji X B. Adv. Funct. Mater. , 2020, 30(46): 4360

    38. [38]

      HE G L, HE Y W, ZHAO Z G, LIU M. Acta Phys. Sin. , 2006, 55(2): 839-843  doi: 10.3321/j.issn:1000-3290.2006.02.065

    39. [39]

      Chen Y Y, Sun Y, Huang X J. Comput. Mater. Sci. , 2016, 115: 109-116  doi: 10.1016/j.commatsci.2016.01.005

    40. [40]

      Wu W, Qin X, Guo J L, Wang J F, Yang H S, Wang L. J. Rare Earths, 2017, 35(9): 887-895  doi: 10.1016/S1002-0721(17)60991-8

    41. [41]

      ZHANG Q M, QIAO Y Q, ZHAO M S, WANG L M. Chinese J. Inorg. Chem. , 2012, 28(1): 67-73
       

    42. [42]

      Keppeler M, Nageswaran S, Kim S J, Srinivasan M. Electrochim. Acta, 2016, 213: 904-910  doi: 10.1016/j.electacta.2016.08.014

    43. [43]

      Niemoller A, Jakes P, Eurich S, Paulus A, Kungl H, Rüdiger A E, Granwehr J. J. Chem. Phys., 2018, 148(1): 014705  doi: 10.1063/1.5008251

    44. [44]

      Wang H L, Shi Z Q, Li J W, Yang S, Ren R B, Cui J Y, Xiao J L, Zhang B. J. Chem. Phys. , 2015, 288: 206-213

    45. [45]

      Chudzik K, Witosawski M, Bakierska M, Kubicka M, Natkański P, Kawako J, Molenda M J E A. Electrochim. Acta, 2021, 373: 137901  doi: 10.1016/j.electacta.2021.137901

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    3. [3]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    4. [4]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    7. [7]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    12. [12]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    18. [18]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(14)
  • Abstract views(966)
  • HTML views(287)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return