Citation: Pei-Pei QIAO, Yue-Wei TIAN, Qing HE, Yong-Po ZHANG, Chun-Yan GAO, Jin-Zhong ZHAO, Wei-Jun DU. Synthesis, Structure and Anticancer Activity of Binuclear Polypyridine Nickel Complexes[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(10): 1738-1744. doi: 10.11862/CJIC.2021.207 shu

Synthesis, Structure and Anticancer Activity of Binuclear Polypyridine Nickel Complexes

Figures(5)

  • Two new polypyridine dinuclear nickel (Ⅱ) complexes[Ni2(L)2Cl2](ClO4)2·3H2O (1) and[Ni2(L)2Cl2](PF6)2 (2) (L=N, N-bis(pyridin-2-ylmethyl)-4-(4-((pyridin-2-ylmethyl)amino)benzyl)aniline) were synthesized, and their structures were determined by X-ray single crystal diffraction, elemental analysis and infrared spectroscopy. Moreover, the in vitro toxic effects of the two complexes on cancer cells (HeLa, BGC-823, NCI-H460, HepG-2) were tested by thiazole blue (MTT) method, and the results indicate that the two complexes showed good toxicity on NCIH460 cells. IC50=(26.0±2.2) μmol·L-1 (1), (31.3±2.7) μmol·L-1 (2). The cytotoxic mechanism of complex 1 towards NCI-H460 cells was further explored by Hoechst 33342 staining, detection of intracellular reactive oxygen species levels and measurement of mitochondrial membrane potential change. The results demonstrate that complex 1 is likely to induce cell apoptosis through the mitochondrial pathway, thereby causing lethal effects on cancer cells.
  • 加载中
    1. [1]

      Farrell N, Spinelli S. Uses of Inorganic Chemistry in Medicine. Cambridge: RSC, 1999: 124-134

    2. [2]

      Johnstone T C, Suntharalingam K, Lippard S J. Chem. Rev., 2016, 116(5): 3436-3486  doi: 10.1021/acs.chemrev.5b00597

    3. [3]

      JIN S X, GUO Z J, WANG X Y. Progress in Pharmaceutical Sciences, 2020, 44(4): 280-293
       

    4. [4]

      Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, Castedo M, Kroemer G. Cell Death Dis., 2014, 5(5): e1257

    5. [5]

      MO H W, LIU Y X, CAI D H, SHEN F, LE X Y. Chinese J. Inorg. Chem., 2019, 35(3): 477-484
       

    6. [6]

      Zhang P L, Hou X X, Liu M R, Huang F P, Qin X Y. Dalton Trans., 2020, 49: 6043-6055  doi: 10.1039/D0DT00380H

    7. [7]

      Zhao Y, Li Z, Li H, Wang S, Niu M. Inorg. Chim. Acta, 2018, 482: 136-143  doi: 10.1016/j.ica.2018.06.008

    8. [8]

      Walsh C T, Orme-Johnson W H. Biochemistry, 1987, 26(16): 4901-4906  doi: 10.1021/bi00390a001

    9. [9]

      Ramasubramanian R, Anandababu K, Kumar M, Mayilmurugan R. Dalton Trans., 2018, 47(12): 4049-4053  doi: 10.1039/C7DT04739H

    10. [10]

      Saylor Z, Maier R. Microbiology, 2018, 164(8): 1059-1068  doi: 10.1099/mic.0.000680

    11. [11]

      Su X, Mccardle K M, Panetier J A, Jurss J W. Chem. Commun., 2018, 54: 3351-3354  doi: 10.1039/C8CC00266E

    12. [12]

      Pang H, Lu Q, Li Y, Gao F. Chem. Commun., 2009, 48(48): 7542-7544

    13. [13]

      Campo R, Criado J J, García E, Hermosa M R, Jiménez-Sánchez A, Manzano J L, Monte E, Rodríguez-Fernández E, Sanz F. J. Inorg. Biochem., 2002, 89(1/2): 74-82

    14. [14]

      ZHANG Y P, LÜ J Y, WANG Y F, GAO C Y, ZHAO J Z. Acta Scientiarum Naturallum Universitatis Nankaiensis, 2016, 49(2): 77-83
       

    15. [15]

      Gao C Y, Ma Z Y, Zhang Y P, Li S T, Gu W, Liu X, Tian J L, Xu J Y, Zhao J Z, Yan S P. RSC Adv., 2015, 5(39): 30768-30779  doi: 10.1039/C4RA16755D

    16. [16]

      PAN J B, CHEN X, FANG W J, LIU W, YU G W. Chinese J. Inorg. Chem., 2018, 34(5): 889-896
       

    17. [17]

      Fujita M. Chem. Soc. Rev., 1998, 27(6): 417-425  doi: 10.1039/a827417z

    18. [18]

      Olenyuk B, Fechtenkötter A, Stang P J. J. Chem. Soc. Dalton Trans., 1998(11): 1707-1728  doi: 10.1039/a801057i

    19. [19]

      Wang F Y, Xi Q Y, Huang K B, Tang X M, Chen Z F, Liu Y C, Liang H. J. Inorg. Biochem., 2017, 169: 23-31  doi: 10.1016/j.jinorgbio.2017.01.001

    20. [20]

      Icsel C, Yilmaz V T, Aydinlik S, Aygun M. Dalton Trans., 2020, 49(23): 7842-7851  doi: 10.1039/D0DT01535K

    21. [21]

      Gao C Y, Qiao X, Ma Z Y, Wang Z G, Lu J, Tian J L, Xu J Y, Yan S P. Dalton Trans., 2012, 41(39): 12220-12232  doi: 10.1039/c2dt31306e

    22. [22]

      Sheldrick G M. Correction Software, University of Göttingen, Germany, 1996.

    23. [23]

      Sheldrick G M. SHELXS-97, Program for the Solution of Crystal Structure, University of Göttingen, Germany, 1997.

    24. [24]

      Sheldrick G M. SHELXL-97, Program for the Refinement of Crystal Structure, University of Göttingen, Germany, 1997.

    25. [25]

      Feng C, Gan Q, Liu X, He H. Chin. J. Chem., 2012, 30(7): 1589-1593  doi: 10.1002/cjoc.201100744

    26. [26]

      Wan D, Lai S H, Zeng C C, Zhang C, Tang B, Liu Y J. J. Inorg. Biochem., 2017, 173: 1-11  doi: 10.1016/j.jinorgbio.2017.04.026

    27. [27]

      Yue X L, Lehri S, Li P, Barbier-Chassefière V, Petit E, Huang Q F, Albanese P, Barritault D, Caruelle J P, Papy-Garcia D, Morin C. Cell Death Differ., 2009, 16(5): 770-781  doi: 10.1038/cdd.2009.9

    28. [28]

      Green D R, Kroemer G. Science, 2004, 305(5684): 626-629  doi: 10.1126/science.1099320

  • 加载中
    1. [1]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    4. [4]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    5. [5]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    8. [8]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    9. [9]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    15. [15]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    16. [16]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    17. [17]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    18. [18]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    19. [19]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    20. [20]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

Metrics
  • PDF Downloads(4)
  • Abstract views(1337)
  • HTML views(351)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return