Citation: Fan WANG, Guang-Bin JI. Research Progress of Microstructure Control and Electromagnetic Wave Absorbing Properties of Perovskite Oxides[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(8): 1353-1363. doi: 10.11862/CJIC.2021.160 shu

Research Progress of Microstructure Control and Electromagnetic Wave Absorbing Properties of Perovskite Oxides

  • Corresponding author: Guang-Bin JI, gbji@nuaa.edu.cn
  • Received Date: 16 January 2021
    Revised Date: 1 June 2021

Figures(8)

  • Perovskite oxides have attracted much attention in the field of microwave absorption due to their unique structure and high thermal stability. The most common way to adjust the electromagnetic properties is to add different ions into the perovskite structure, but there is disadvantage study of structure changes before and after doping, and the relationship between the structure changes and electromagnetic absorption characteristics. Based on this, the research progress of perovskite Mn oxide, Co oxide, Fe oxide materials is analyzed in detail from the rule of electromagnetic wave absorption properties which vary with the change of magnetism and conductivity, which is due to the distortion effect caused by the change of perovskite structure and the double exchange of free electrons caused by the change of ionic valence state in the crystal. The structure and microwave absorption mechanism of perovskite oxides are introduced, and the existing problems and future development direction are pointed out.
  • 加载中
    1. [1]

      Zhu T G, Sun Y, Wang Y J, Xing H N, Zong Y, Ren Z Y, Yu H P, Zheng X L. J. Mater. Sci. , 2020, 56(1): 592-606

    2. [2]

      Yan J, Huang Y, Yan Y H, Zhao X X, Liu P B. Composites Part A, 2020, 139: 106107  doi: 10.1016/j.compositesa.2020.106107

    3. [3]

      Zhao H Q, Cheng Y, Liu W, Yang L J, Zhang B S, Wang L P, Ji G B, Xu Z C. J. Nanotechnol. , 2018, 29(29): 295603  doi: 10.1088/1361-6528/aac0de

    4. [4]

      Liang X H, Man Z M, Quan B, Zheng J, Gu W H, Zhang Z, Ji G B. Nano-Micro Lett. , 2020, 12(1): 102  doi: 10.1007/s40820-020-00432-2

    5. [5]

      Quan B, Shi W H, Ong S J H, Lu X C, Wang P L Y, Ji G B, Guo Y F, Zheng L R, Xu Z C J. Adv. Funct. Mater. , 2019, 29(28): 1901236  doi: 10.1002/adfm.201901236

    6. [6]

      Lv H L, Yang Z H, Wang P L, Ji G B, Song J Z, Zheng L R, Zeng H B, Xu Z C J. Adv. Mater. , 2018, 30(15): 1706343  doi: 10.1002/adma.201706343

    7. [7]

      Chen J B, Zheng J, Fan W, Huanh Q Q, Ji G B. Carbon, 2021, 174: 509-517  doi: 10.1016/j.carbon.2020.12.077

    8. [8]

      Gu W H, Cui X Q, Zheng J, Yu J W, Zhao Y, Ji G B. J. Mater. Sci. Technol. , 2021, 67: 265-272  doi: 10.1016/j.jmst.2020.06.054

    9. [9]

      Cui X Q, Liang X H, Liu W, Gu W H, Ji G B, Du Y W. Chem. Eng. J. , 2020, 381: 122589  doi: 10.1016/j.cej.2019.122589

    10. [10]

      Quan B, Gu W H, Sheng J Q, Lv X F, Mao Y Y, Liu L, Huang X G, Tian Z J, Ji G B. Nano Res. , 2020, 14(5): 1405-1501

    11. [11]

      Gu W H, Tan J W, Chen J B, Zhang Z, Zhao Y, Yu J W, Ji G B. ACS Appl. Mater. Interfaces, 2020, 12(25): 28727-28737  doi: 10.1021/acsami.0c09202

    12. [12]

      Lv H L, Yang Z H, Ong S J H, Wei C, Liao H B, Xi S B, Du Y H, Ji G B, Xu Z C J. Adv. Funct. Mater. , 2019, 29(14): 1900163  doi: 10.1002/adfm.201900163

    13. [13]

      Xiao Y, Huang H X, Liang D M, Wang C. Chem. Phys. Lett. , 2020, 738: 136846  doi: 10.1016/j.cplett.2019.136846

    14. [14]

      Deka D J, Kim J, Gunduz S, Jain D, Shi Y, Miller J T, Co A C, Ozkan U S. Appl. Catal. B, 2021, 283: 119642  doi: 10.1016/j.apcatb.2020.119642

    15. [15]

      Zhang G, Liu G, Wang L, Irvine J T S. Chem. Soc. Rev. , 2016, 45(21): 5951-5984  doi: 10.1039/C5CS00769K

    16. [16]

      BAI Y B, WANG Q Y, LÜ R T. Chin. Sci. Bull. , 2016, 61(4/5): 489-500
       

    17. [17]

      Zhao H Q, Cheng Y, Zhang Z, Yu J W, Zheng J, Zhou M, Zhou L, Zhang B S, Ji G B. Composites Part B, 2020, 196: 108119  doi: 10.1016/j.compositesb.2020.108119

    18. [18]

      Cui X Q, Liang X H, Chen J B, Gu W H, Ji G B, Du Y W. Carbon, 2020, 156: 49-57  doi: 10.1016/j.carbon.2019.09.041

    19. [19]

      Zhao H Q, Cheng Y, Zhang Z, Zhang B S, Pei C C, Fan F Y, Ji G B. Carbon, 2021, 173: 501-505  doi: 10.1016/j.carbon.2020.11.035

    20. [20]

      Xiao Y, Huang H X, Liang D M, Wang C. Chem. Phys. Lett. , 2020, 738: 136846  doi: 10.1016/j.cplett.2019.136846

    21. [21]

      Nossa J F, Naumov I I, Cohen R E. Phys. Rev. B, 2015, 91(21): 214105  doi: 10.1103/PhysRevB.91.214105

    22. [22]

      Teller E, Jahn H A. Proc. R. Soc. London Ser. A, 1937, 161(905): 220-235  doi: 10.1098/rspa.1937.0142

    23. [23]

      Belik A A. J. Solid State Chem. , 2017, 246: 8-15  doi: 10.1016/j.jssc.2016.10.025

    24. [24]

      Mtougui S, Housni I E, Mekkaoui N E, Ziti S, Idrissi S, Labrim H, Khalladi R, Bahmad L. Chin. Phys. B, 2020, 29(5): 056101  doi: 10.1088/1674-1056/ab7d95

    25. [25]

      Aguado F, Rodriguez F, Núñez P. Phys. Rev. B, 2007, 76(9): 094417  doi: 10.1103/PhysRevB.76.094417

    26. [26]

      Wagner P, Gordon I, Mangin S, Moshchalkov V V, Bruynseraede Y, Pinsard L, Revcolevschi A. Phys. Rev. B, 2000, 61: 529-537  doi: 10.1103/PhysRevB.61.529

    27. [27]

      Braga M H, Oliveira J E, Murchison A J, Goodenough J B. Appl. Phys. Rev. , 2020, 7(1): 011406  doi: 10.1063/1.5132841

    28. [28]

      Chen Y M, Wang Z Q, Li X Y, Yao X H, Wang C, Li Y T, Xue W J, Yu D W, Kim S Y, Yang F, Kushima A, Zahng G G, Huang H T, Wu N, Mai Y W, Goodenough J B, Li J. Nature, 2020, 578(7794): 251-260  doi: 10.1038/s41586-020-1972-y

    29. [29]

      Braga M H, Grundish N S, Murchison A J, Murchison A J, Goodenough J B. Mater. Sci. , 2019, 3(1): 1-16

    30. [30]

      HUANG S X, QI W, ZHOU K S, QIN X M, CHEN Y, DENG L W, XIA H, HAN J H. The Chinese Journal of Nonferrous Metals, 2012, 22(2): 448-452
       

    31. [31]

      ZHOU Y P, ZHOU K S, WANG D, YING L S, HANG K L, GAO S H. Journal of Central South University (Science and Technology), 2007, 38(2): 276-280  doi: 10.3969/j.issn.1672-7207.2007.02.018

    32. [32]

      Zener C. Phys. Rev. , 1951, 83(2): 299-301  doi: 10.1103/PhysRev.83.299

    33. [33]

      Zhu H, Zhang P, Dai S. ACS Catal. , 2015, 5(11): 6370-6385  doi: 10.1021/acscatal.5b01667

    34. [34]

      Hevia E, Uzelac M, Mastropierro P, Tullio M D, Borilovic I, Tarres M, Kennedy A, Aromi G. Angew. Chem. , 2020, 5(11): 6370-6385

    35. [35]

      Thuijs A E, Li X G, Wang Y P, Abboud K A, Zhang X G, Cheng H P, Christou G. Nat. Commun. , 2017, 8(1): 500  doi: 10.1038/s41467-017-00642-0

    36. [36]

      LIU J W, WANG J J, XU B C. Journal of Aeronautical Materials, 2017, 37(5): 29-34
       

    37. [37]

      SUN Y F, SIQIN G W, LI P F. Vacuum, 2015, 52(5): 39-42
       

    38. [38]

      Dai S S, Quan B, Zhang B, Liang X H, Ji G B. Dalton Trans. , 2019, 48: 2359-2366  doi: 10.1039/C8DT04966A

    39. [39]

      Hardy V, Breard Y, Guillou F. J. Phys. : Condens. Matter, 2020, 33: 095801

    40. [40]

      Hajimiri I, Seyed D M S, Rasoulifard M H, Amani-Ghadim A R, Khoshroo M R. Mater. Sci. Eng. B, 2017, 225: 75-85  doi: 10.1016/j.mseb.2017.06.016

    41. [41]

      CAI J, YAO Q R, RAO G H. J. Chin. Soc. Rare Earths, 2015, 33(3): 341-348
       

    42. [42]

      Hueso J L, Holgado J P, Pereñíguez R, Gonzalez-DelaCruz V M, Caballero A. Mater. Chem. Phys. , 2015, 151: 29-33  doi: 10.1016/j.matchemphys.2014.11.015

    43. [43]

      Hueso J L, Holgado J P, Pereñíguez R, Mun S, Salmeron M, Caballero A. J. Solid-State Chem. , 2010, 183(1): 27-32  doi: 10.1016/j.jssc.2009.10.008

    44. [44]

      Peng M, Yang J Y, Liu Y K, Xie H Z, Chen K J, Kong J. J. Am. Chem. Soc. , 2020, 20: 4818-4826

    45. [45]

      Hong Y, Li J, Bai H, Song Z J, Li G M, Wang M, Zhou Z X. Appl. Phys. Lett. , 2020, 116(1): 013103  doi: 10.1063/1.5132780

    46. [46]

      Liu S, Luo H, Yan S, Yao L L, Hea J, Lia Y H, He L H, Huanga S X, Denga L W. J. Magn. Magn. Mater. , 2017, 426: 267-272  doi: 10.1016/j.jmmm.2016.11.080

    47. [47]

      Bi S, Su X J, Li J, Houa G L, Liu Z H, Zhong C R, Hou Z L. Ceram. Int. , 2017, 43(15): 11815-11819  doi: 10.1016/j.ceramint.2017.06.023

    48. [48]

      Li Y, Cao M S. Mater. Des. , 2016, 110: 99-104  doi: 10.1016/j.matdes.2016.07.119

    49. [49]

      Lin Y, Wang Q, Gao S, Yang H, Wang L. J. Alloys Compd. , 2018, 745: 761-772  doi: 10.1016/j.jallcom.2018.02.237

    50. [50]

      Liao J, Ye M, Han A. J. Mater. Sci. -Materi. Electron. , 2020, 31(9): 6988-6997  doi: 10.1007/s10854-020-03264-3

    51. [51]

      Gao X, Wang Y, Wang Q, Wu X M, Zhang W Z, Zong M, Zhang L J. Ceram. Int. , 2019, 45(3): 3325-3332  doi: 10.1016/j.ceramint.2018.10.243

    52. [52]

      Gao S, Wang Q, Lin Y, Yang H B, Wang L. J. Alloys Compd. , 2019, 781: 723-733  doi: 10.1016/j.jallcom.2018.11.327

    53. [53]

      Rusly S N A, Ismail I, Matori K A, Abbas Z, Shaari A H, Awang Z, Ibrahim I R, Idris F M, Zaid M H M, Mahmood M K A, Hasan I H. Ceram. Int. , 2020, 46(1): 737-746  doi: 10.1016/j.ceramint.2019.09.027

    54. [54]

      Wang H, Jin P. J. Nanopart. Res. , 2018, 20(7): 1-7

    55. [55]

      Li Y, Sun N, Liu J, Hao X H, Du J H, Yang H J, Li X W, Gao M S. Compos. Sci. Technol. , 2018, 159: 240-250  doi: 10.1016/j.compscitech.2018.02.014

    56. [56]

      Ahad F B A, Hung D S, Yao Y D, Lee S F, Tu C S, Wang T H, Chen Y Y, Fu Y P. J. Appl. Phys. , 2009, 105(7): 07D912

    57. [57]

      Rusly S N A, Matori K A, Ismail I, Abbas Z, Awang Z, Idris F M, Ibrahim I R. J. Mater. Sci. -Mater Electron. , 2018, 29(15): 13229-13240  doi: 10.1007/s10854-018-9447-8

    58. [58]

      Lü F C, Yin K, Fu K X, Wang Y N, Ren J, Xie Q. Ceram. Int. , 2017, 43(18): 16101-16106  doi: 10.1016/j.ceramint.2017.08.171

    59. [59]

      Li Y, Cao W Q, Yuan J, Wang D W, Cao M S. J. Mater. Chem. C, 2015, 3(36): 9276-9282  doi: 10.1039/C5TC01684C

    60. [60]

      Li Y, Fang X, Cao M. Sci. Rep. , 2016, 6(1): 24837  doi: 10.1038/srep24837

    61. [61]

      Zhu J, Ye M, Han A. J. Mater. Sci. -Mater. Electron. , 2017, 28(18): 13350-13359  doi: 10.1007/s10854-017-7172-3

    62. [62]

      Zhang M, Yang H J, Li Y, Cao W Q, Fang X Y, Yuan J, Cao M S. Appl. Phys. Lett. , 2019, 115(21): 212902  doi: 10.1063/1.5134741

    63. [63]

      Han C, Shu J C, Xiang K, Yang H J, Yuan J, Cao M S. J. Mater. Sci. -Mater. Electron. , 2018, 29(23): 19739-19747  doi: 10.1007/s10854-018-0099-5

    64. [64]

      Moitra D, Dhole S, Ghosh B K, Chandel M, Jani R K, Patra M K, Vadera S R, Ghosh N N. J. Phys. Chem. C, 2017, 121(39): 21290-21304  doi: 10.1021/acs.jpcc.7b02836

    65. [65]

      Liu X, Wang L S, Ma Y, Zheng H F, Lin L, Zhang Q, Chen Y Z, Qiu Y L, Peng D L. ACS Appl. Mater. Interfaces, 2017, 9(8): 7601-7610  doi: 10.1021/acsami.6b15379

    66. [66]

      Jia Z R, Gao Z G, Kou K C, Zhang C H, Nie G Z, Wang K K, Wu G L. Compos. Commun. , 2020, 20: 100344  doi: 10.1016/j.coco.2020.04.010

    67. [67]

      Jia Z R, Gao Z G, Feng A L, Zhang C H, Xu B H, Wu G L. Compos. Part B, 2019, 176: 107246  doi: 10.1016/j.compositesb.2019.107246

    68. [68]

      Gao Z G, Jia Z R, Zhang J Q, Feng A, Huang Z Y, Wu G L. J. Mater. Sci. -Mater. Electron. , 2019, 30: 13474-13487  doi: 10.1007/s10854-019-01715-0

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    6. [6]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    9. [9]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    10. [10]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    11. [11]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    12. [12]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    16. [16]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(69)
  • Abstract views(2460)
  • HTML views(816)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return