Citation: Fan WANG, Guang-Bin JI. Research Progress of Microstructure Control and Electromagnetic Wave Absorbing Properties of Perovskite Oxides[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(8): 1353-1363. doi: 10.11862/CJIC.2021.160 shu

Research Progress of Microstructure Control and Electromagnetic Wave Absorbing Properties of Perovskite Oxides

  • Corresponding author: Guang-Bin JI, gbji@nuaa.edu.cn
  • Received Date: 16 January 2021
    Revised Date: 1 June 2021

Figures(8)

  • Perovskite oxides have attracted much attention in the field of microwave absorption due to their unique structure and high thermal stability. The most common way to adjust the electromagnetic properties is to add different ions into the perovskite structure, but there is disadvantage study of structure changes before and after doping, and the relationship between the structure changes and electromagnetic absorption characteristics. Based on this, the research progress of perovskite Mn oxide, Co oxide, Fe oxide materials is analyzed in detail from the rule of electromagnetic wave absorption properties which vary with the change of magnetism and conductivity, which is due to the distortion effect caused by the change of perovskite structure and the double exchange of free electrons caused by the change of ionic valence state in the crystal. The structure and microwave absorption mechanism of perovskite oxides are introduced, and the existing problems and future development direction are pointed out.
  • 加载中
    1. [1]

      Zhu T G, Sun Y, Wang Y J, Xing H N, Zong Y, Ren Z Y, Yu H P, Zheng X L. J. Mater. Sci. , 2020, 56(1): 592-606

    2. [2]

      Yan J, Huang Y, Yan Y H, Zhao X X, Liu P B. Composites Part A, 2020, 139: 106107  doi: 10.1016/j.compositesa.2020.106107

    3. [3]

      Zhao H Q, Cheng Y, Liu W, Yang L J, Zhang B S, Wang L P, Ji G B, Xu Z C. J. Nanotechnol. , 2018, 29(29): 295603  doi: 10.1088/1361-6528/aac0de

    4. [4]

      Liang X H, Man Z M, Quan B, Zheng J, Gu W H, Zhang Z, Ji G B. Nano-Micro Lett. , 2020, 12(1): 102  doi: 10.1007/s40820-020-00432-2

    5. [5]

      Quan B, Shi W H, Ong S J H, Lu X C, Wang P L Y, Ji G B, Guo Y F, Zheng L R, Xu Z C J. Adv. Funct. Mater. , 2019, 29(28): 1901236  doi: 10.1002/adfm.201901236

    6. [6]

      Lv H L, Yang Z H, Wang P L, Ji G B, Song J Z, Zheng L R, Zeng H B, Xu Z C J. Adv. Mater. , 2018, 30(15): 1706343  doi: 10.1002/adma.201706343

    7. [7]

      Chen J B, Zheng J, Fan W, Huanh Q Q, Ji G B. Carbon, 2021, 174: 509-517  doi: 10.1016/j.carbon.2020.12.077

    8. [8]

      Gu W H, Cui X Q, Zheng J, Yu J W, Zhao Y, Ji G B. J. Mater. Sci. Technol. , 2021, 67: 265-272  doi: 10.1016/j.jmst.2020.06.054

    9. [9]

      Cui X Q, Liang X H, Liu W, Gu W H, Ji G B, Du Y W. Chem. Eng. J. , 2020, 381: 122589  doi: 10.1016/j.cej.2019.122589

    10. [10]

      Quan B, Gu W H, Sheng J Q, Lv X F, Mao Y Y, Liu L, Huang X G, Tian Z J, Ji G B. Nano Res. , 2020, 14(5): 1405-1501

    11. [11]

      Gu W H, Tan J W, Chen J B, Zhang Z, Zhao Y, Yu J W, Ji G B. ACS Appl. Mater. Interfaces, 2020, 12(25): 28727-28737  doi: 10.1021/acsami.0c09202

    12. [12]

      Lv H L, Yang Z H, Ong S J H, Wei C, Liao H B, Xi S B, Du Y H, Ji G B, Xu Z C J. Adv. Funct. Mater. , 2019, 29(14): 1900163  doi: 10.1002/adfm.201900163

    13. [13]

      Xiao Y, Huang H X, Liang D M, Wang C. Chem. Phys. Lett. , 2020, 738: 136846  doi: 10.1016/j.cplett.2019.136846

    14. [14]

      Deka D J, Kim J, Gunduz S, Jain D, Shi Y, Miller J T, Co A C, Ozkan U S. Appl. Catal. B, 2021, 283: 119642  doi: 10.1016/j.apcatb.2020.119642

    15. [15]

      Zhang G, Liu G, Wang L, Irvine J T S. Chem. Soc. Rev. , 2016, 45(21): 5951-5984  doi: 10.1039/C5CS00769K

    16. [16]

      BAI Y B, WANG Q Y, LÜ R T. Chin. Sci. Bull. , 2016, 61(4/5): 489-500
       

    17. [17]

      Zhao H Q, Cheng Y, Zhang Z, Yu J W, Zheng J, Zhou M, Zhou L, Zhang B S, Ji G B. Composites Part B, 2020, 196: 108119  doi: 10.1016/j.compositesb.2020.108119

    18. [18]

      Cui X Q, Liang X H, Chen J B, Gu W H, Ji G B, Du Y W. Carbon, 2020, 156: 49-57  doi: 10.1016/j.carbon.2019.09.041

    19. [19]

      Zhao H Q, Cheng Y, Zhang Z, Zhang B S, Pei C C, Fan F Y, Ji G B. Carbon, 2021, 173: 501-505  doi: 10.1016/j.carbon.2020.11.035

    20. [20]

      Xiao Y, Huang H X, Liang D M, Wang C. Chem. Phys. Lett. , 2020, 738: 136846  doi: 10.1016/j.cplett.2019.136846

    21. [21]

      Nossa J F, Naumov I I, Cohen R E. Phys. Rev. B, 2015, 91(21): 214105  doi: 10.1103/PhysRevB.91.214105

    22. [22]

      Teller E, Jahn H A. Proc. R. Soc. London Ser. A, 1937, 161(905): 220-235  doi: 10.1098/rspa.1937.0142

    23. [23]

      Belik A A. J. Solid State Chem. , 2017, 246: 8-15  doi: 10.1016/j.jssc.2016.10.025

    24. [24]

      Mtougui S, Housni I E, Mekkaoui N E, Ziti S, Idrissi S, Labrim H, Khalladi R, Bahmad L. Chin. Phys. B, 2020, 29(5): 056101  doi: 10.1088/1674-1056/ab7d95

    25. [25]

      Aguado F, Rodriguez F, Núñez P. Phys. Rev. B, 2007, 76(9): 094417  doi: 10.1103/PhysRevB.76.094417

    26. [26]

      Wagner P, Gordon I, Mangin S, Moshchalkov V V, Bruynseraede Y, Pinsard L, Revcolevschi A. Phys. Rev. B, 2000, 61: 529-537  doi: 10.1103/PhysRevB.61.529

    27. [27]

      Braga M H, Oliveira J E, Murchison A J, Goodenough J B. Appl. Phys. Rev. , 2020, 7(1): 011406  doi: 10.1063/1.5132841

    28. [28]

      Chen Y M, Wang Z Q, Li X Y, Yao X H, Wang C, Li Y T, Xue W J, Yu D W, Kim S Y, Yang F, Kushima A, Zahng G G, Huang H T, Wu N, Mai Y W, Goodenough J B, Li J. Nature, 2020, 578(7794): 251-260  doi: 10.1038/s41586-020-1972-y

    29. [29]

      Braga M H, Grundish N S, Murchison A J, Murchison A J, Goodenough J B. Mater. Sci. , 2019, 3(1): 1-16

    30. [30]

      HUANG S X, QI W, ZHOU K S, QIN X M, CHEN Y, DENG L W, XIA H, HAN J H. The Chinese Journal of Nonferrous Metals, 2012, 22(2): 448-452
       

    31. [31]

      ZHOU Y P, ZHOU K S, WANG D, YING L S, HANG K L, GAO S H. Journal of Central South University (Science and Technology), 2007, 38(2): 276-280  doi: 10.3969/j.issn.1672-7207.2007.02.018

    32. [32]

      Zener C. Phys. Rev. , 1951, 83(2): 299-301  doi: 10.1103/PhysRev.83.299

    33. [33]

      Zhu H, Zhang P, Dai S. ACS Catal. , 2015, 5(11): 6370-6385  doi: 10.1021/acscatal.5b01667

    34. [34]

      Hevia E, Uzelac M, Mastropierro P, Tullio M D, Borilovic I, Tarres M, Kennedy A, Aromi G. Angew. Chem. , 2020, 5(11): 6370-6385

    35. [35]

      Thuijs A E, Li X G, Wang Y P, Abboud K A, Zhang X G, Cheng H P, Christou G. Nat. Commun. , 2017, 8(1): 500  doi: 10.1038/s41467-017-00642-0

    36. [36]

      LIU J W, WANG J J, XU B C. Journal of Aeronautical Materials, 2017, 37(5): 29-34
       

    37. [37]

      SUN Y F, SIQIN G W, LI P F. Vacuum, 2015, 52(5): 39-42
       

    38. [38]

      Dai S S, Quan B, Zhang B, Liang X H, Ji G B. Dalton Trans. , 2019, 48: 2359-2366  doi: 10.1039/C8DT04966A

    39. [39]

      Hardy V, Breard Y, Guillou F. J. Phys. : Condens. Matter, 2020, 33: 095801

    40. [40]

      Hajimiri I, Seyed D M S, Rasoulifard M H, Amani-Ghadim A R, Khoshroo M R. Mater. Sci. Eng. B, 2017, 225: 75-85  doi: 10.1016/j.mseb.2017.06.016

    41. [41]

      CAI J, YAO Q R, RAO G H. J. Chin. Soc. Rare Earths, 2015, 33(3): 341-348
       

    42. [42]

      Hueso J L, Holgado J P, Pereñíguez R, Gonzalez-DelaCruz V M, Caballero A. Mater. Chem. Phys. , 2015, 151: 29-33  doi: 10.1016/j.matchemphys.2014.11.015

    43. [43]

      Hueso J L, Holgado J P, Pereñíguez R, Mun S, Salmeron M, Caballero A. J. Solid-State Chem. , 2010, 183(1): 27-32  doi: 10.1016/j.jssc.2009.10.008

    44. [44]

      Peng M, Yang J Y, Liu Y K, Xie H Z, Chen K J, Kong J. J. Am. Chem. Soc. , 2020, 20: 4818-4826

    45. [45]

      Hong Y, Li J, Bai H, Song Z J, Li G M, Wang M, Zhou Z X. Appl. Phys. Lett. , 2020, 116(1): 013103  doi: 10.1063/1.5132780

    46. [46]

      Liu S, Luo H, Yan S, Yao L L, Hea J, Lia Y H, He L H, Huanga S X, Denga L W. J. Magn. Magn. Mater. , 2017, 426: 267-272  doi: 10.1016/j.jmmm.2016.11.080

    47. [47]

      Bi S, Su X J, Li J, Houa G L, Liu Z H, Zhong C R, Hou Z L. Ceram. Int. , 2017, 43(15): 11815-11819  doi: 10.1016/j.ceramint.2017.06.023

    48. [48]

      Li Y, Cao M S. Mater. Des. , 2016, 110: 99-104  doi: 10.1016/j.matdes.2016.07.119

    49. [49]

      Lin Y, Wang Q, Gao S, Yang H, Wang L. J. Alloys Compd. , 2018, 745: 761-772  doi: 10.1016/j.jallcom.2018.02.237

    50. [50]

      Liao J, Ye M, Han A. J. Mater. Sci. -Materi. Electron. , 2020, 31(9): 6988-6997  doi: 10.1007/s10854-020-03264-3

    51. [51]

      Gao X, Wang Y, Wang Q, Wu X M, Zhang W Z, Zong M, Zhang L J. Ceram. Int. , 2019, 45(3): 3325-3332  doi: 10.1016/j.ceramint.2018.10.243

    52. [52]

      Gao S, Wang Q, Lin Y, Yang H B, Wang L. J. Alloys Compd. , 2019, 781: 723-733  doi: 10.1016/j.jallcom.2018.11.327

    53. [53]

      Rusly S N A, Ismail I, Matori K A, Abbas Z, Shaari A H, Awang Z, Ibrahim I R, Idris F M, Zaid M H M, Mahmood M K A, Hasan I H. Ceram. Int. , 2020, 46(1): 737-746  doi: 10.1016/j.ceramint.2019.09.027

    54. [54]

      Wang H, Jin P. J. Nanopart. Res. , 2018, 20(7): 1-7

    55. [55]

      Li Y, Sun N, Liu J, Hao X H, Du J H, Yang H J, Li X W, Gao M S. Compos. Sci. Technol. , 2018, 159: 240-250  doi: 10.1016/j.compscitech.2018.02.014

    56. [56]

      Ahad F B A, Hung D S, Yao Y D, Lee S F, Tu C S, Wang T H, Chen Y Y, Fu Y P. J. Appl. Phys. , 2009, 105(7): 07D912

    57. [57]

      Rusly S N A, Matori K A, Ismail I, Abbas Z, Awang Z, Idris F M, Ibrahim I R. J. Mater. Sci. -Mater Electron. , 2018, 29(15): 13229-13240  doi: 10.1007/s10854-018-9447-8

    58. [58]

      Lü F C, Yin K, Fu K X, Wang Y N, Ren J, Xie Q. Ceram. Int. , 2017, 43(18): 16101-16106  doi: 10.1016/j.ceramint.2017.08.171

    59. [59]

      Li Y, Cao W Q, Yuan J, Wang D W, Cao M S. J. Mater. Chem. C, 2015, 3(36): 9276-9282  doi: 10.1039/C5TC01684C

    60. [60]

      Li Y, Fang X, Cao M. Sci. Rep. , 2016, 6(1): 24837  doi: 10.1038/srep24837

    61. [61]

      Zhu J, Ye M, Han A. J. Mater. Sci. -Mater. Electron. , 2017, 28(18): 13350-13359  doi: 10.1007/s10854-017-7172-3

    62. [62]

      Zhang M, Yang H J, Li Y, Cao W Q, Fang X Y, Yuan J, Cao M S. Appl. Phys. Lett. , 2019, 115(21): 212902  doi: 10.1063/1.5134741

    63. [63]

      Han C, Shu J C, Xiang K, Yang H J, Yuan J, Cao M S. J. Mater. Sci. -Mater. Electron. , 2018, 29(23): 19739-19747  doi: 10.1007/s10854-018-0099-5

    64. [64]

      Moitra D, Dhole S, Ghosh B K, Chandel M, Jani R K, Patra M K, Vadera S R, Ghosh N N. J. Phys. Chem. C, 2017, 121(39): 21290-21304  doi: 10.1021/acs.jpcc.7b02836

    65. [65]

      Liu X, Wang L S, Ma Y, Zheng H F, Lin L, Zhang Q, Chen Y Z, Qiu Y L, Peng D L. ACS Appl. Mater. Interfaces, 2017, 9(8): 7601-7610  doi: 10.1021/acsami.6b15379

    66. [66]

      Jia Z R, Gao Z G, Kou K C, Zhang C H, Nie G Z, Wang K K, Wu G L. Compos. Commun. , 2020, 20: 100344  doi: 10.1016/j.coco.2020.04.010

    67. [67]

      Jia Z R, Gao Z G, Feng A L, Zhang C H, Xu B H, Wu G L. Compos. Part B, 2019, 176: 107246  doi: 10.1016/j.compositesb.2019.107246

    68. [68]

      Gao Z G, Jia Z R, Zhang J Q, Feng A, Huang Z Y, Wu G L. J. Mater. Sci. -Mater. Electron. , 2019, 30: 13474-13487  doi: 10.1007/s10854-019-01715-0

  • 加载中
    1. [1]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    2. [2]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    5. [5]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    6. [6]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    7. [7]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    8. [8]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    9. [9]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    10. [10]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    12. [12]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    15. [15]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    16. [16]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    17. [17]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    20. [20]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

Metrics
  • PDF Downloads(108)
  • Abstract views(5274)
  • HTML views(1624)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return