Citation: Ya-Bo SHI, Guo-Qiang ZHANG, Yu-Chen SUN, Hua-Yan ZHENG, Zhong LI, Ju SHANGGUAN, Jie MI, Shou-Jun LIU, Peng-Zheng SHI. KIT-6 Supported CeO2 for Catalytic Synthesis of Dimethyl Carbonate from CO2 and Methanol[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(6): 1004-1016. doi: 10.11862/CJIC.2021.129 shu

KIT-6 Supported CeO2 for Catalytic Synthesis of Dimethyl Carbonate from CO2 and Methanol

Figures(12)

  • A series of KIT-6 were synthesized by hydrothermal method at varied aging temperatures (80, 100, 120 and 150℃), which were used as supports to fabricate CeO2/KIT-6 catalysts. Combined with X-ray diffraction, N2-physisorption, temperature-programmed desorption of NH3 and CO2, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy results, the effect of aging temperatures on the structure of KIT-6 and the catalytic activity of CeO2/KIT-6 for direct synthesis of dimethyl carbonate (DMC) from CO2 and methanol were investigated in detail. The results indicated that the KIT-6 synthesized at different aging temperatures maintained their unique three-dimensional pore structure. With the increasing aging temperature, the surface areas of KIT-6 firstly increased and then decreased, which attained the maximum (683 m2·g-1) as the aging temperature was 100℃. High surface areas of KIT-6 favor for the dispersion of CeO2 and thus improve the number of exposed active sites. The catalytic activity increases with the improved number of the medium base/acid adsorption sites and content of Ce3+. Herein, the particle size of CeO2 for CeO2/100-KIT-6 was the smallest (5.9 nm) and therefore the number of exposed active sites reached the maximum, which contributed to the optimal catalytic activity. Moreover, the effect of reaction temperature and pressure on the catalytic activity of CeO2/100-KIT-6 were studied. The results showed that the catalytic activity firstly increased and then decreased with the increasing reaction temperature, and attained the highest as the reaction temperature was 140℃. In addition, the catalytic activity increased with the increase of reaction pressure. Furthermore, the recycle stability of CeO2/100-KIT-6 was also studied under 140℃ and 6.8 MPa. The results showed that the DMC yield decreased from 15 mmol·gCeO2-1 to 2.8 mmol·gCeO2-1 after recycle six times, which is due to the decrease of active sites resulting from the agglomeration of CeO2 nanoparticles.
  • 加载中
    1. [1]

      SUN Y C, ZHANG G Q, LIU B, LI Z, SHANGGUAN J, LIU S J, SHI P Z. Chem. Ind. Eng. Prog., 2019, 38(11): 5127-5135
       

    2. [2]

      Zhong J W, Yang X F, Wu Z L, Liang B L, Huang Y Q, Zhang T. Chem. Soc. Rev., 2020, 49(5): 1385-1413  doi: 10.1039/C9CS00614A

    3. [3]

      Ronda-Lloret M, Rothenberg G, Shiju N. R. ChemSusChem, 2019, 12(17): 3896-3914  doi: 10.1002/cssc.201900915

    4. [4]

      Zhou W, Cheng K, Kang J C, Zhou C, Subramanian V, Zhang Q H, Wang Y. Chem. Soc. Rev., 2019, 48(12): 3193-3228  doi: 10.1039/C8CS00502H

    5. [5]

      Liu M S, Wang X, Jiang Y C, Sun J M, Arai M. Catal. Rev., 2018, 61(2): 214-269

    6. [6]

      Kumar P, Srivastava V C, Štangar U L, Mušič B, Mishra I M, Meng Y Z. Catal. Rev.-Sci. Eng., 2019, DOI:10.1080/01614940.2019.1696609  doi: 10.1080/01614940.2019.1696609

    7. [7]

      Huang S Y, Yan B, Wang S P, Ma X B. Chem. Soc. Rev., 2015, 44(10): 3079-3116  doi: 10.1039/C4CS00374H

    8. [8]

      Jung K T, Bell A T. J. Catal., 2001, 204(2): 339-347  doi: 10.1006/jcat.2001.3411

    9. [9]

      Liu B, Li C M, Zhang G Q, Yao X S, Chuang S S. C, Li Z. ACS Catal., 2018, 8(11): 10446-10456  doi: 10.1021/acscatal.8b00415

    10. [10]

      Wang S P, Zhao L F, Wang W, Zhao Y J, Zhang G L, Ma X B, Gong J L. Nanoscale, 2013, 5(12): 5582-5588  doi: 10.1039/c3nr00831b

    11. [11]

      Marciniak A A, Alves O C, Appel L G, Mota C J. A. J. Catal., 2019, 371: 88-95  doi: 10.1016/j.jcat.2019.01.035

    12. [12]

      Liu B, Li C M, Zhang G Q, Yan L F, Li Z. New J. Chem., 2017, 41(20): 12231-12240  doi: 10.1039/C7NJ02606D

    13. [13]

      ZHANG G Q, SUN Y C, SHI Y B, ZHENG H Y, LI Z, SHANGGUAN J, LIU S J, SHI P Z. Chem. J. Chinese Universities, 2020, 9(41): 2061-2069
       

    14. [14]

      Liu H, Zou W J, Xu X L, Zhang X L, Yang Y Q, Yue H J, Yu Y, Tian G, Feng S H. J. CO2 Util., 2017, 17: 43-49  doi: 10.1016/j.jcou.2016.11.006

    15. [15]

      Fu Z W, Zhong Y Y, Yu Y H, Long L Z, Xiao M, Han D M, Wang S J, Meng Y Z. ACS Omega, 2018, 3(1): 198-207  doi: 10.1021/acsomega.7b01475

    16. [16]

      Soni K, Rana B S, Sinha A K, Bhaumik A, Nandi M, Kumar M, Dhar G. M. Appl. Catal. B, 2009, 90(1/2): 55-63

    17. [17]

      Cao H X, Zhang J, Guo C L, Chen J G, Ren X K. Chin. J. Catal., 2017, 38(7): 1127-1137  doi: 10.1016/S1872-2067(17)62862-6

    18. [18]

      Subhan F, Aslam S, Yan Z F, Ikram M, Rehman S. Microporous Mesoporous Mater., 2014, 199: 108-116  doi: 10.1016/j.micromeso.2014.08.018

    19. [19]

      Cao H X, Wang W Y, Cui T L, Wang H Y, Zhu G, Ren X K. Energies, 2020, 13(9): 2235  doi: 10.3390/en13092235

    20. [20]

      Zhou X F, Wan J W, Liu Y F, Liu D, Wang H, Lai X Y, Zou Y Z, Lin G, Chen J. Nano, 2017, 12(9): 1750104  doi: 10.1142/S1793292017501041

    21. [21]

      Taghizadeh M, Akhoundzadeh H, Rezayan A, Sadeghian M. Int. J. Hydrogen Energy, 2018, 43(24): 10926-10937  doi: 10.1016/j.ijhydene.2018.05.034

    22. [22]

      Bai B Y, Qiao Q, Li Y P, Peng Y, Li J H. Chin. J. Catal., 2018, 39(4): 630-638  doi: 10.1016/S1872-2067(18)63036-0

    23. [23]

      Kleitz F, Choi S, Ryoo R. Chem. Commun., 2003, 9: 2136-2137

    24. [24]

      Harun T S, Christian W. L, Hans B, Bernd T, Roland S, Ferdi S. J. Am. Chem. Soc., 2008, 130(34): 11510-11517  doi: 10.1021/ja803362s

    25. [25]

      Hu B, Liu H, Tao K, Xiong C R, Zhou S H. J. Phys. Chem. C, 2013, 117(49): 26385-26395  doi: 10.1021/jp4098028

    26. [26]

      Shao Y F, Wang L Z, Zhang J L, Anpo M. J. Phys. Chem. B, 2005, 109: 20835-20841  doi: 10.1021/jp054024+

    27. [27]

      Zhang J Y, Zhao S Y, Zhao Y J, Ma X B, Wang S P. Asia-Pac. J. Chem. Eng., 2021, 16(1): e2517

    28. [28]

      Chen Y D, Tang Q, Ye Z B, Li Y, Yang Y, Pu H Y, Li G. New J. Chem., 2020, 44(29): 12522-12530  doi: 10.1039/D0NJ02650F

    29. [29]

      CHU S L, LI X, Robertson A W, SUN Z Y. Acta Phys.-Chim. Sin., 2021, 37(5): 2009023
       

    30. [30]

      Chu S L, Yan X P, Choi C H, Hong S, Robertson A W, Masa J, Han B X, Jung Y S, Sun Z Y. Green Chem., 2020, 22(19): 6540-6546  doi: 10.1039/D0GC02279A

    31. [31]

      Kumar P, Srivastava V C, Gläser R, With P, Mishra I M. Powder Technol., 2017, 309: 13-21  doi: 10.1016/j.powtec.2016.12.016

    32. [32]

      Zhao S Y, Wang S P, Zhao Y J, Ma X B. Chin. Chem. Lett., 2017, 28(1): 65-69  doi: 10.1016/j.cclet.2016.06.003

    33. [33]

      Hu W K, He F, Chen X, Liu S T. J. Nanopart. Res., 2018, 21(1): 6

    34. [34]

      Kumar P, With P, Srivastava V C, Shukla K, Gläser R, Mishra I M. RSC Adv., 2016, 6(111): 110235-110246  doi: 10.1039/C6RA22643D

    35. [35]

      Zhang M, Xiao M, Wang S J, Han D M, Lu Y X, Meng Y Z. J. Cleaner Prod., 2015, 103: 847-853  doi: 10.1016/j.jclepro.2014.09.024

    36. [36]

      Li A X, Pu Y F, Li F, Luo J, Zhao N, Xiao F K. J. CO2 Util., 2017, 19: 33-39  doi: 10.1016/j.jcou.2017.02.016

    37. [37]

      Zhang R, Guo L, Chen C, Chen J Z, Chen A J, Zhao X G, Liu X R, Xiu Y H, Hou Z S. Catal. Sci. Technol., 2015, 5(5): 2959-2972  doi: 10.1039/C5CY00166H

    38. [38]

      Chen S C, Wang H, Kang Z X, Jin S, Zhang X D, Zheng X S, Qi Z M, Zhu J F, Pan B C, Xie Y. Nat. Commun., 2019, 10(1): 788  doi: 10.1038/s41467-019-08697-x

    39. [39]

      Fu Y, Zhu H, Shen J. Thermochim. Acta, 2005, 434(1/2): 88-92

  • 加载中
    1. [1]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    2. [2]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    3. [3]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    4. [4]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    5. [5]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    8. [8]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    9. [9]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    12. [12]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    13. [13]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    14. [14]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    15. [15]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    18. [18]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    19. [19]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    20. [20]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

Metrics
  • PDF Downloads(10)
  • Abstract views(1287)
  • HTML views(346)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return