Citation: Liang ZHAO, Shao-Shuai CHU, Jun-Kai CAI, Jian-Wei WEI, Ya-Nan LI, Chun-Ying DUAN. Metal-Organic Triangles with NADH Mimics for Photocatalytic Hydrogen Production[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(5): 769-777. doi: 10.11862/CJIC.2021.092 shu

Metal-Organic Triangles with NADH Mimics for Photocatalytic Hydrogen Production

  • Corresponding author: Liang ZHAO, zhaol@dlut.edu.cn
  • Received Date: 28 October 2020
    Revised Date: 28 December 2020

Figures(7)

  • By incorporating two different reduced nicotinamide adenine dinucleotide (NADH) mimics within the ligand backbone, two positively charged cobalt-based metal-organic triangular hosts Co-L1 and Co-L2 (H2L1=5'-(benzo[d]thiazol-2-yl)-N'4, N'''''4″-bis((E)-pyridin-2-ylmethylene)-[1, 1': 3', 1″-terphenyl]-4, 4″-dicarbohydrazide, H2L2=5'(benzo[d]imidazol-2-yl)-N'4, N'''''4″-bis((E)-pyridin-2-ylmethylene)-[1, 1': 3', 1″-terphenyl]-4, 4″-dicar bohydrazide) have been prepared in high yield and characterized as a redox vehicle for the construction of an artificial photosynthesis (AP) system. By taking advantage of electrostatic interaction to facilitate the formation of host-guest complexes, anionic ruthenium-based photosensitizer[Ru(dcbpy)3]4- (dcbpy=2, 2'-bipyridine-4, 4'-dicarboxylic acid) was encapsulated into the suitable cavity of hosts to improve photoinduced electron transfer (PET) processes and to promote photocatalytic hydrogen production. Compared with metal-organic triangular Co-L3 without NADH mimics (H2L3=5'-methyl-N'4, N'''''4″-bis((E)-pyridin-2-ylmethylene)-[1, 1': 3', 1″-terphenyl]-4, 4″-dicarbohydrazide) and mononuclear catalyst Co-L4 (HL4=(E)-N'-(pyridin-2-ylmethylene)benzohydrazide) containing the same coordination environment and without NADH mimics, photocatalytic hydrogen production efficiency of the host-guest supramolecular photosynthetic systems could increase 1.6 and 6 times, respectively. The higher catalytic activity is attributed to the formation of host-guest complex between catalyst Co-L1 and Co-L2 and photosensitizer[Ru(dcbpy)3]4- and the introduction of NADH mimics benefiting the PET process between the catalyst and photosensitizer.
  • 加载中
    1. [1]

      Zhou C, Shi R, Waterhouse G I N, Zhang T R. Coord. Chem. Rev. , 2020, 419: 213399  doi: 10.1016/j.ccr.2020.213399

    2. [2]

      Ran J R, Zhang J, Yu J G, Jaroniec M, Qiao S Z. Chem. Soc. Rev. , 2014, 43: 7787-7812  doi: 10.1039/C3CS60425J

    3. [3]

      Li X, Yu J G, Jaroniec M. Chem. Soc. Rev. , 2016, 45: 2603-2636  doi: 10.1039/C5CS00838G

    4. [4]

      Wu K, Hou Y J, Lu Y L, Fan Y Z, Fan Y N, Yu H J, Li K, Pan M, Su C Y. Chem. Eur. J. , 2019, 25: 11903-11909  doi: 10.1002/chem.201901612

    5. [5]

      Xiao T X, Zhong W W, Zhou L, Xu L X, Sun X Q, Elmes R B P, Hu X Y, Wang L Y. Chin. Chem. Lett. , 2019, 30: 31-36  doi: 10.1016/j.cclet.2018.05.034

    6. [6]

      Li X, Yu J G, Low J X, Fang Y P, Xiao J, Chen X B. J. Mater. Chem. A, 2015, 3: 2485-2534  doi: 10.1039/C4TA04461D

    7. [7]

      Xie A, Pan Z H, Yu M, Luo G G, Sun D. Chin. Chem. Lett. , 2019, 30: 225-228  doi: 10.1016/j.cclet.2018.05.003

    8. [8]

      WU Q Y, ZHANG C X, SUN K, JIANG H L. Acta Chim. Sinica, 2020, 78: 688-694  doi: 10.11862/CJIC.2020.075

    9. [9]

      Pan Y T, Qian Y Y, Zheng X S, Chu S Q, Yang Y J, Ding C M, Wang X, Yu S H, Jiang H L. Natl. Sci. Rev. , 2021, 8(1): nwaa224  doi: 10.1093/nsr/nwaa224

    10. [10]

      Frischmann P D, Mahata K, Würthner F. Chem. Soc. Rev. , 2013, 42: 1847-1870  doi: 10.1039/C2CS35223K

    11. [11]

      Pan M, Wu K, Zhang J H, Su C Y. Coord. Chem. Rev. , 2020, 378: 333-349

    12. [12]

      Lehn J M. Supramolecular Chemistry: Concepts and Perspectives. Weinheim: Wiley-VCH, 1995: 2-6

    13. [13]

      Jing X, He C, Yang Y, Duan C Y. J. Am. Chem. Soc. , 2015, 137: 3967-3974  doi: 10.1021/jacs.5b00832

    14. [14]

      Brown C J, Toste F D, Bergman R G, Raymond K N. Chem. Rev. , 2015, 115: 3012-3035  doi: 10.1021/cr4001226

    15. [15]

      He C, Wang J, Zhao L, Liu T, Zhang J, Duan C Y. Chem. Commun. , 2013, 49: 627-629

    16. [16]

      Yang L, He C, Liu X, Zhang J, Sun H, Guo H M. Chem. Eur. J. , 2016, 22: 5253-5260  doi: 10.1002/chem.201504975

    17. [17]

      Nurttila S S, Becker R, Hessels J, Woutersen S, Reek J N H. Chem. Eur. J. , 2018, 24: 16395-16406  doi: 10.1002/chem.201803351

    18. [18]

      Cai J K, Zhao L, Wei J W, He C, Long S R, Duan C Y. Chem. Commun. , 2019, 55: 8524-8527  doi: 10.1039/C9CC03871J

    19. [19]

      YANG L L, JING X, HE C, DUAN C Y. Chinese J. Inorg. Chem. , 2017, 33(6): 913-922
       

    20. [20]

      LI H C, LI M F, HE C, DUAN C Y. Chinese J. Inorg. Chem. , 2018, 34(1): 11-19
       

    21. [21]

      ZHANG W Y, YANG Y, HUANG H L, JING X, DUAN C Y. Chinese J. Inorg. Chem. , 2020, 36(10): 1988-1996  doi: 10.11862/CJIC.2020.206
       

    22. [22]

      Yadav R K, Oh G H, Park N J, Kumar A, Kong K J, Baeg J O. J. Am. Chem. Soc. , 2014, 136: 16728-16731  doi: 10.1021/ja509650r

    23. [23]

      Sun Z T, Lonsdale R, Ilie A, Li G Y, Zhou J H, Reetz M T. ACS Catal. , 2016, 6: 1598-1605  doi: 10.1021/acscatal.5b02752

    24. [24]

      Litman Z C, Wang Y J, Zhao H M, Hartwig J F. Nature, 2018, 560: 355-359  doi: 10.1038/s41586-018-0413-7

    25. [25]

      McSkimming A, Colbran S B. Chem. Soc. Rev. , 2013, 42: 5439-5488  doi: 10.1039/c3cs35466k

    26. [26]

      Feng Y S, Yang C Y, Huang Q, Xu H J. Tetrahedron, 2012, 68: 5053-5059  doi: 10.1016/j.tet.2012.04.047

    27. [27]

      Zhu C, Saito K, Yamanaka M, Akiyama T. Acc. Chem. Res. , 2015, 48: 388-398  doi: 10.1021/ar500414x

    28. [28]

      Gao S, Huang S, Duan Q, Hou J H, Jiang D Y, Liang Q C, Zhao J X. Int. J. Hydrogen Energy, 2014, 39: 10434-10444  doi: 10.1016/j.ijhydene.2014.05.003

    29. [29]

      Zhao L, Wei J W, Lu J H, He C, Duan C Y. Angew. Chem. Int. Ed. , 2017, 56: 8692-8696  doi: 10.1002/anie.201702926

    30. [30]

      Zhao L, Wang J, Wu P Y, He C, Guo X Y, Duan C Y. Sci. Rep. , 2017, 7: 14347  doi: 10.1038/s41598-017-14728-8

    31. [31]

      Wei J W, Zhao L, He C, Zheng S J, Reek J N H, Duan C Y. J. Am. Chem. Soc. , 2019, 141: 12707-12716  doi: 10.1021/jacs.9b05351

    32. [32]

      Zhao L, Cai J K, Li Y N, Wei J W, Duan C Y. Nat. Commun. , 2020, 11: 2903  doi: 10.1038/s41467-020-16714-7

    33. [33]

      Zhao L, Wei J W, Zhang J, He C, Duan C Y. Angew. Chem. Int. Ed. , 2017, 56: 15284-15288  doi: 10.1002/anie.201707676

    34. [34]

      Zhao L, Wei J W, Zhang F L, He C, Zheng S J, Duan C Y. RSC Adv. , 2017, 7: 48989-48993  doi: 10.1039/C7RA09285G

    35. [35]

      Zhou J, Zhang Y Z, Yu G C, Crawley M R, Fulong C R P, Friedman A E, Sengupta S, Sun J F, Li Q, Huang F H, Cook T R. J. Am. Chem. Soc. , 2018, 140: 7730-7736  doi: 10.1021/jacs.8b04929

    36. [36]

      Baffert C, Artero V, Fontecave M. Inorg. Chem. , 2007, 46: 1817-1824  doi: 10.1021/ic061625m

    37. [37]

      Artero V, Chavarot-Kerlidou M, Fontecave M. Angew. Chem. Int. Ed. , 2011, 50: 7238-7266  doi: 10.1002/anie.201007987

    38. [38]

      Jiang P J, Guo Z J. Coord. Chem. Rev. , 2004, 248: 205-229  doi: 10.1016/j.cct.2003.10.013

    39. [39]

      Nelissen H F M, Kercher M, De Cola L, Feiters M C, Nolte R J M. Chem. Eur. J. , 2002, 8: 5407-5414  doi: 10.1002/1521-3765(20021202)8:23<5407::AID-CHEM5407>3.0.CO;2-P

    40. [40]

      Zheng S J, Zhao L, Wei J W, He C, Liu G Z, Duan C Y. Inorg. Chem. Commun. , 2019, 109: 107558  doi: 10.1016/j.inoche.2019.107558

    41. [41]

      Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Chem. Rev. , 2015, 115: 11718-11940  doi: 10.1021/acs.chemrev.5b00263

    42. [42]

      Wu K, Li K, Chen S, Hou Y J, Lu Y L, Wang J S, Wei M J, Pan M, Su C Y. Angew. Chem. Int. Ed. , 2020, 59: 2639-2643

    43. [43]

      Odella E, Wadsworth B L, Mora S J, Goings J J, Huynh M T, Gust D, Moore T A, Moore G F, Hammes-Schiffer S, Moore A L. J. Am. Chem. Soc. , 2019, 141: 14057-14061  doi: 10.1021/jacs.9b06978

    44. [44]

      Ranjeesh K C, Illathvalappil R, Veer S D, Peter J, Wakchaure V C, Goudappagouda, Raj K V, Kurungot S, Babu S S. J. Am. Chem. Soc. , 2019, 141: 14950-14954  doi: 10.1021/jacs.9b06080

    45. [45]

      Dong J F, Wang M, Zhang P, Yang S Q, Liu J Y, Li X Q, Sun L C. J. Phys. Chem. C, 2011, 115: 15089-15096  doi: 10.1021/jp2040778

    46. [46]

      Zhang S Q, Han L, Li L N, Cheng J, Yuan D Q, Luo J H. Cryst. Growth Des. , 2013, 13: 5466-5472  doi: 10.1021/cg401438j

    47. [47]

      Elliott C M, Caramori S, Bignozzi C A. Langmuir, 2005, 21: 3022-3027

  • 加载中
    1. [1]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    4. [4]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    5. [5]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    14. [14]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    15. [15]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

Metrics
  • PDF Downloads(9)
  • Abstract views(898)
  • HTML views(162)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return