Citation: Lan ZHANG, Xi-gui WANG. Effect of TiO2 on Luminescent Properties of ZnO/ZnS: Eu3+ Phosphor[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(4): 601-607. doi: 10.11862/CJIC.2021.071 shu

Effect of TiO2 on Luminescent Properties of ZnO/ZnS: Eu3+ Phosphor

  • Corresponding author: Lan ZHANG, 15848421119@139.com
  • Received Date: 7 July 2020
    Revised Date: 13 January 2021

Figures(10)

  • ZnO/ZnS/2TiO2: Eu3+ phosphor was prepared by sol-gel-precipitation method. The structure, composition, morphology and luminescent properties were characterized by used X-ray diffraction(XRD), infrared spectroscopy(IR), transmission electron microscope(TEM) and fluorescence spectrum. The mechanism of luminescence was investigated. The results showed that phosphor changed into a stable structure when the temperature was above 600 ℃, and structure of the irregular shape. The phosphor mainly composed of ZnO, TiO2 and ZnS. IR spectra show that the structure of Ti—O—Ti bridge oxygen bond network is conducive to pass energy among the Eu3+. Fluorescence spectra show that the addition of TiO2 can remove the inhibition of Eu3+ spectral melody and improve the luminescence properties of phosphor. And the best luminescence performance was obtained in the phosphor prepared with nZn(NO3)2: nTiO2=1:2. The strongest emission peak was 5D07F2 electric dipole transition at 612 nm, and the optimum annealing temperature was 600 ℃.
  • 加载中
    1. [1]

      PENG H X, LIU Z Y, HU C Y, ZHANG L, TIAN X Y, PENG Y X. Chinese J. Inorg. Chem. , 2018, 34(10): 1851-1856  doi: 10.11862/CJIC.2018.241
       

    2. [2]

      LI S L, LÜ C, MIN X, FANG M H, HUANG C H, LIU Y G. Chinese J. Inorg. Chem. , 2017, 33(5): 761-768
       

    3. [3]

      WANG F, TIAN Y G, ZHANG Q. Chinese J. Inorg. Chem. , 2019, 35(1): 25-33
       

    4. [4]

      TIAN Y, LI L, XIN Z C, ZHANG W Z, XU Y M. Chinese J. Inorg. Chem. , 2019, 35(3): 493-504
       

    5. [5]

      Hitkari G, Singh S, Pandey G. Trans. Nonferrous Met. Soc. China, 2018, 28(7): 1386-1396  doi: 10.1016/S1003-6326(18)64777-6

    6. [6]

      MEI Q F, ZHANG F Y, WANG N, LU W S, SU X T, WANG W, WU R L. Chinese J. Inorg. Chem. , 2019, 35(8): 1321-1339
       

    7. [7]

      LIU S Q, XIE M J, GUO X F, JI W J. Chinese J. Inorg. Chem. , 2020, 36(2): 317-323
       

    8. [8]

      XIE Y T, TAN J, WANG Y F, YU J, LIU J. Chinese J. Inorg. Chem. , 2018, 34(12): 2153-2160  doi: 10.11862/CJIC.2018.267
       

    9. [9]

      ZHANG G X. Journal of Functional Materials and Devices, 2014, 20(5): 158-163
       

    10. [10]

      ZHANG J C, CHEN H W, WU T Y, LI K Y, JIN Y X. Chin. J. Lumin. , 2019, 40(7): 879-884
       

    11. [11]

      LI J J, WANG X G. Chin. J. Lumin. , 2012, 33(6): 601-605
       

    12. [12]

      CHENG C H, WANG X J, MENG L L, ZHANG L X, LIANG L F. Chin. J. Lumin. , 2018, 39(7): 923-929
       

    13. [13]

      Binnemans K, Van Deun R, Görller Walrand C, Adam J L. J. Non-Cryst. Solids, 1998, 238: 11-29

    14. [14]

      WANG X G, QI X, BO S L, NA M L. Spectroscopy and Spectral Analysis, 2011, 31(5): 1193-1196
       

    15. [15]

      WANG L X. Chinese J. Inorg. Chem. , 2017, 33(10): 1741-1747
       

    16. [16]

      ZHANG R X, WANG T, JING Y J, ZHU Y H, WANG H B. Mater. Rep. , 2008, 22(8): 286-289
       

    17. [17]

      WANG F, LIU D C, YANG B, LIU L J, DAI Y N. The Chinese Journal of Nonferrous Metals, 2012, 22(4): 1107-1112
       

    18. [18]

      LIU Q, YANG Q H, ZHAO G G, LU S Z, ZHANG H J. Chinese J. Inorg. Chem. , 2013, 29(4): 798-802
       

    19. [19]

      SHI Y F, WANG W, CHEN K Z. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2012, 33(1): 5-8
       

    20. [20]

      LUO K J, ZHANG S L, SU Y W, LI Q. Chinese J. Inorg. Chem. , 2016, 32(10): 1747-1756
       

    21. [21]

      ZHANG H M, ZHANG H R, LIU Y L, DONG H W, HUANG J F, CHEN S Y, LEI B F. Chinese J. Inorg. Chem. , 2015, 31(8): 1489-1494
       

    22. [22]

      Liu Y F, Hou G F, Yu Y H, Yan P F, Li J Y, Li G M, Gao J S. Cryst. Growth Des. , 2013, 10: 1021-1029

    23. [23]

      Phaomei G, Singh W R, Ningthoujam R S. J. Lumin. , 2011, 131(6): 1164-1171

    24. [24]

      Gangwar P, Pandey M, Sivakumar S, Pala R G S, Parthasarathy G. Cryst. Growth Des. , 2013, 13: 2344-2349

    25. [25]

      Sailaja S, Reddy B S. Ceram. Int. , 2011, 37: 1781-1787

    26. [26]

      YU Y H, XIA M, WU W J. China Ceramics, 2012, 48(7): 51-53, 59
       

    27. [27]

      Li X, Cao J, Yang L L, Wei M B, Liu X Y, Liu Q Y, Hong Y Z, Zhou Y, Yang J H. Dalton Trans. , 2019, 48: 2442-2454

    28. [28]

      ZHAO Y, LI H X. Journal of Synthetic Crystals, 2019, 48(3): 539-544
       

    29. [29]

      JING L Q, SUN X J, CAI W M, LI X Q, FU H G, HOU H G, FAN N Y. Acta Chim. Sinica, 2003, 61(8): 1241-1245
       

    30. [30]

      GUO N, GUO K, SHENG Y, ZOU H F. Journal of Jilin University (Science Edition), 2009, 47(2): 367-375
       

    31. [31]

      CAO J L, WANG X G. Chinese J. Inorg. Chem. , 2018, 34(2): 325-330
       

    32. [32]

      NIU X P, XU J P, ZHANG X S, CHENG X M, LUO C Y, LI K X, LI L. Journal of Optoelectronics·Laser, 2012, 23(6): 1509-1512
       

    33. [33]

      Dexter D L. J. Chem. Phys. , 1953, 21(5): 8362850

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    3. [3]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    6. [6]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    7. [7]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    14. [14]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    19. [19]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    20. [20]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

Metrics
  • PDF Downloads(9)
  • Abstract views(1547)
  • HTML views(370)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return