Citation: Ru-Xia LI, Wen-Bin ZHONG, Lin-Hua XIE, Ya-Bo XIE, Jian-Rong LI. Recent Advances in Adsorptive Removal of Cr(Ⅵ) Ions by Metal-Organic Frameworks[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(3): 385-400. doi: 10.11862/CJIC.2021.068 shu

Recent Advances in Adsorptive Removal of Cr(Ⅵ) Ions by Metal-Organic Frameworks

  • Corresponding author: Lin-Hua XIE, xielinhua@bjut.edu.cn
  • Received Date: 3 September 2020
    Revised Date: 16 January 2021

Figures(13)

  • The pollution of heavy metal ions has long been a big concern to the society. The development and utilization of porous materials for the adsorptive removal of heavy metal ions in water represents one of the hottest research subjects in related areas, such as materials science and environmental science. Due to their structural variety, large specific surface area, adjustable pore size, and tailorable pore surface characteristics, metal-organic frameworks (MOFs) show great potential in many applications, such as gas separation, catalysis, and sensing. In the past few years, many major breakthroughs have been made in the construction of highly stable MOFs. A lot of research works have been explored for the applications of MOFs in water systems, including the adsorptive removal of heavy metal ions in water. Cr(Ⅵ) ions are a kind of wide-distributed heavy metal ions with high toxicity, existing in water in various forms under different conditions. The study on the removal of Cr(Ⅵ) ions from water is of significance academically and practically. Herein, the published research works about adsorptive removal of Cr(Ⅵ) ions with MOFs or MOFbased materials are reviewed. These materials are classified into four classes: (1) highly stable zirconium-based MOF, (2) cationic MOF, (3) post-modified MOF, and (4) MOF-based composite materials. The adsorption mechanism, adsorption capacity, and regenerability of these materials for Cr(Ⅵ) ions are also discussed. The existing problems and the trend of future works for the practical application of MOFs in the removal of heavy metal ions are analyzed at last.
  • 加载中
    1. [1]

      Huang J J S, Lin S C, Löwemark L, Liou S Y H, Chang Q, Chang T K, Wei K Y, Croudace L W. Sci. Rep., 2019, 9(1): 1-6

    2. [2]

      Gupta V K, Suhas, Nayak A, Agarwal S, Chaudhary M, Tyagi I. J. Mol. Liq., 2014, 190: 215-222  doi: 10.1016/j.molliq.2013.11.008

    3. [3]

      Zhang C, Ye F G, Shen S F, Xiong Y H, Su L J, Zhao S L. RSC Adv., 2015, 5(11): 8228-8235  doi: 10.1039/C4RA15942J

    4. [4]

      Benskin J P, Yeung L W Y, Yamashita N, Taniyasu S, Lam P K S, Martin J W. Environ. Sci. Technol., 2010, 44(23): 9049-9054  doi: 10.1021/es102582x

    5. [5]

      Zou Y D, Wang X X, Khan A, Wang P Y, Liu Y H, Alsaedi A, Hayat T, Wang X K. Environ. Sci. Technol., 2016, 50(14): 7290-7304  doi: 10.1021/acs.est.6b01897

    6. [6]

      Blowes D. Science, 2002, 295(5562): 2024-2025  doi: 10.1126/science.1070031

    7. [7]

      Renu M A, Singh K, Upadhyaya S, Dohare R K. Mater. Today Proc., 2017, 4(9): 10534-10538  doi: 10.1016/j.matpr.2017.06.415

    8. [8]

      Paiva A N, Lima De J G, Medeiros De A C Q, Figueiredo H A O, Andrade De R L, Ururahy M A G, Rezende A A, Brandão Neto A, Almeida M D G. J. Trace Elem. Med. Biol., 2015, 32: 66-72  doi: 10.1016/j.jtemb.2015.05.006

    9. [9]

      Maleki A, Hayati B, Naghizadeh M, Joo S W. J. Ind. Eng. Chem., 2015, 28: 211-216  doi: 10.1016/j.jiec.2015.02.016

    10. [10]

      Shi P F, Zhao B, Xiong G, Hou Y L, Cheng P. Chem. Commun., 2012, 48(66): 8231-8233  doi: 10.1039/c2cc33707j

    11. [11]

      Gheju M, Balcu I. J. Hazard. Mater., 2011, 196: 131-138  doi: 10.1016/j.jhazmat.2011.09.002

    12. [12]

      Kononova O N, Bryuzgina G L, Apchitaeva O V, Kononov Y S. Arabian J. Chem., 2019, 12(8): 2713-2720  doi: 10.1016/j.arabjc.2015.05.021

    13. [13]

      Shahrak M N, Ghahramaninezhad M, Eydifarash M. Environ. Sci. Pollut. Res., 2017, 24(10): 9624-9634  doi: 10.1007/s11356-017-8577-5

    14. [14]

      Tonini D R, Gauvin D A, Soffel R W, Freeman W P. Environ. Prog., 2003, 22(3): 167-173  doi: 10.1002/ep.670220314

    15. [15]

      SHI L. Thesis for the Doctorate of Jilin University. 2014.

    16. [16]

      Vilela D, Parmar J, Zeng Y F, Zhao Y L, Sánchez S. Nano Lett., 2016, 16(4): 2860-2866  doi: 10.1021/acs.nanolett.6b00768

    17. [17]

      Huang N, Zhai L P, Xu H, Jiang D L. J. Am. Chem. Soc., 2017, 139(6): 2428-2434  doi: 10.1021/jacs.6b12328

    18. [18]

      Erdem E, Karapinar N, Donat R. J. Colloid Interface Sci., 2004, 280(2): 309-314  doi: 10.1016/j.jcis.2004.08.028

    19. [19]

      Xiao B, Thomas K M. Langmuir, 2005, 21(9): 3892-3902  doi: 10.1021/la047135t

    20. [20]

      Gao J K, Guo X W, Tao W W, Chen D, Lu J S, Chen Y. Sci. Rep., 2019, 9(1): 1-10

    21. [21]

      Pehlivan E, Arslan G. Fuel Process. Technol., 2007, 88(1): 99-106  doi: 10.1016/j.fuproc.2006.09.004

    22. [22]

      Deng S Q, Mo X J, Zheng S R, Jin X, Gao Y, Cai S L, Fan J, Zhang W J. Inorg. Chem., 2019, 58(4): 2899-2909  doi: 10.1021/acs.inorgchem.9b00104

    23. [23]

      FAN D S. Environment & Development, 2017, 29(7): 138-140
       

    24. [24]

      Jain M, Yadav M, Kohout T, Lahtinen M, Garg V K, Sillanpää M. Water Resour. Ind., 2018, 20: 54-74  doi: 10.1016/j.wri.2018.10.001

    25. [25]

      Zhang S H, Wu M F, Tang T T, Xing Q J, Peng C Q, Li F, Liu H, Luo X B, Zou J P, Min X B, Luo J M. Chem. Eng. J., 2018, 335: 945953

    26. [26]

      Bhaumik M, Agarwal S, Gupta V K, Maity A. J. Colloid Interface Sci., 2016, 470: 257-267  doi: 10.1016/j.jcis.2016.02.054

    27. [27]

      Huang J N, Li Y H, Cao Y H, Peng F, Cao Y G, Shao Q, Liu H, Guo Z H. J. Mater. Chem. A, 2018, 6(27): 13062-13074  doi: 10.1039/C8TA02861C

    28. [28]

      Mullick A, Moulik S, Bhattacharjee S. Indian Chem. Eng., 2018, 60(1): 58-71  doi: 10.1080/00194506.2017.1288173

    29. [29]

      Zheng B S, Yun R R, Bai J F, Lu Z Y, Du L T, Li L Z. Inorg. Chem., 2013, 52(6): 2823-2829  doi: 10.1021/ic301598n

    30. [30]

      Xie L H, Liu X M, He T, Li J R. Chem, 2018, 4(8): 1911-1927  doi: 10.1016/j.chempr.2018.05.017

    31. [31]

      Li J R, Kuppler R J, Zhou H C. Chem. Soc. Rev., 2009, 38(5): 14771504

    32. [32]

      Yu J M, Xie L H, Li J R, Ma Y G, Seminario J M, Balbuena P B. Chem. Rev., 2017, 117(14): 9674-9754  doi: 10.1021/acs.chemrev.6b00626

    33. [33]

      Valvekens P, Vermoortele F, De Vos D. Catal. Sci. Technol., 2013, 3(6): 1435-1445  doi: 10.1039/c3cy20813c

    34. [34]

      Lv X L, Wang K C, Wang B, Su J, Zou X D, Xie Y B, Li J R, Zhou H C. J. Am. Chem. Soc., 2017, 139(1): 211-217  doi: 10.1021/jacs.6b09463

    35. [35]

      Bagheri M, Masoomi M Y, Morsali A, Schoedel A. ACS Appl. Mater. Interfaces, 2016, 8(33): 21472-21479  doi: 10.1021/acsami.6b06955

    36. [36]

      Wang B, Wang P L, Xie L H, Lin R B, Lv J, Li J R, Chen B L. Nat. Commun., 2019, 10(1): 1-8  doi: 10.1038/s41467-018-07882-8

    37. [37]

      Ke F, Qiu L G, Yuan Y P, Peng F M, Jiang X, Xie A J, Shen Y H, Zhu J F. J. Hazard. Mater., 2011, 196: 36-43  doi: 10.1016/j.jhazmat.2011.08.069

    38. [38]

      Zou F, Yu R H, Li R G, Li W. ChemPhysChem, 2013, 14(12): 28252832

    39. [39]

      Kobielska P A, Howarth A J, Farha O K, Nayak S. Coord. Chem. Rev., 2018, 358: 92-107  doi: 10.1016/j.ccr.2017.12.010

    40. [40]

      Li X X, Xu H Y, Kong F Z, Wang R H. Angew. Chem. Int. Ed., 2013, 52(51): 13769-13773  doi: 10.1002/anie.201307650

    41. [41]

      Fu H R, Xu Z X, Zhang J. Chem. Mater., 2015, 27(1): 205-210  doi: 10.1021/cm503767r

    42. [42]

      Wu Y Z, Xu G H, Liu W, Yang J, Wei F D, Li L, Zhang W, Hu Q. Microporous Mesoporous Mater., 2015, 210: 110-115  doi: 10.1016/j.micromeso.2015.02.032

    43. [43]

      Zhang Y Y, Feng X, Li H W, Chen Y F, Zhao J S, Wang S, Wang L, Wang B. Angew. Chem. Int. Ed., 2015, 54(14): 4259-4263  doi: 10.1002/anie.201500207

    44. [44]

      Zhang Q, Yu J C, Cai J F, Zhang L, Cui Y J, Yang Y, Chen B L, Qian J D. Chem. Commun., 2015, 51(79): 14732-14734  doi: 10.1039/C5CC05927E

    45. [45]

      Desai A V, Manna B, Karmakar A, Sahu A, Ghosh S K. Angew. Chem. Int. Ed., 2016, 55(27): 7811-7815  doi: 10.1002/anie.201600185

    46. [46]

      Ding B, Guo C, Liu S X, Cheng Y, Wu X X, Su X M, Liu Y Y, Li Y. RSC Adv., 2016, 6(40): 33888-33900  doi: 10.1039/C6RA03576K

    47. [47]

      Aboutorabi L, Morsali A, Tahmasebi E, Buyukgungor O. Inorg. Chem., 2016, 55(11): 5507-5513  doi: 10.1021/acs.inorgchem.6b00522

    48. [48]

      Lin Z J, Zheng H Q, Zheng H Y, Lin L P, Xin Q, Cao R. Inorg. Chem., 2017, 56(22): 14178-14188  doi: 10.1021/acs.inorgchem.7b02327

    49. [49]

      Guo M M, Guo H D, Liu S Y, Sun Y Y, Guo X M. RSC Adv., 2017, 7(80): 51021-51026  doi: 10.1039/C7RA09429A

    50. [50]

      Wu S B, Ge Y J, Wang Y Q, Chen X, Li F F, Xuan H, Li X. Environ. Technol., 2018, 39(15): 1937-1948  doi: 10.1080/09593330.2017.1344732

    51. [51]

      Fang Y, Wen J, Zeng G M, Jia F Y, Zhang S Y, Peng Z L, Zhang H B. Chem. Eng. J., 2018, 337: 532-540  doi: 10.1016/j.cej.2017.12.136

    52. [52]

      Bo S G, Ren W J, Lei C, Xie Y B, Cai Y R, Wang S L, Gao J K, Ni Q Q, Yao J M. J. Solid State Chem., 2018, 262: 135-141  doi: 10.1016/j.jssc.2018.02.022

    53. [53]

      He T, Zhang Y Z, Kong X J, Yu J M, Lv X L, Wu Y F, Guo Z J, Li J R. ACS Appl. Mater. Interfaces, 2018, 10(19): 16650-16659  doi: 10.1021/acsami.8b03987

    54. [54]

      Shokouhfar N, Aboutorabi L, Morsali A. Dalton Trans., 2018, 47(41): 14549-14555  doi: 10.1039/C8DT03196G

    55. [55]

      Samuel M S, Subramaniyan V, Bhattacharya J, Parthiban C, Chand S, Singh N D P. Composites Part B, 2018, 152: 116-125  doi: 10.1016/j.compositesb.2018.06.034

    56. [56]

      Zheng M Q, Zhao X D, Wang K K, She Y B, Gao Z Q. Ind. Eng. Chem. Res., 2019, 58(51): 23330-23337  doi: 10.1021/acs.iecr.9b04598

    57. [57]

      Shao Z C, Huang C, Wu Q, Zhao Y J, Xu W J, Liu Y Y, Dang J, Hou H W. J. Hazard. Mater., 2019, 378: 120719  doi: 10.1016/j.jhazmat.2019.05.112

    58. [58]

      Yang P F, Shu Y F, Zhuang Q X, Li Y S, Gu J L. Langmuir, 2019, 35(49): 16226-16233  doi: 10.1021/acs.langmuir.9b03057

    59. [59]

      Hu H J, Liu J Y, Xu Z H, Zhang L Y, Cheng B, Ho W K. Appl. Surf. Sci., 2019, 478: 981-990  doi: 10.1016/j.apsusc.2019.02.008

    60. [60]

      Jamshidifard S, Koushkbaghi S, Hosseini S, Rezaei S, Karamipour A, Rad J A, Irani M. J. Hazard. Mater., 2019, 368: 10-20  doi: 10.1016/j.jhazmat.2019.01.024

    61. [61]

      Li D W, Tian X J, Wang Z Q, Guan Z, Li X Q, Qiao H, Ke H Z, Luo L, Wei Q F. Chem. Eng. J., 2020, 383: 123127  doi: 10.1016/j.cej.2019.123127

    62. [62]

      Deng Y Y, Xiao X F, Wang D, Han B, Gao Y, Xue J L. J. Nanosci. Nanotechnol., 2020, 20(3): 1660-1669  doi: 10.1166/jnn.2020.17157

    63. [63]

      Zhang X R, Wang X, Fan W D, Wang Y T, Wang X K, Zhang K, Sun D F. Mater. Chem. Front., 2020, 4(4): 1150-1157  doi: 10.1039/C9QM00612E

    64. [64]

      Bai Y, Dou Y B, Xie L H, Rutledge W, Li J R, Zhou H C. Chem. Soc. Rev., 2016, 45(8): 2327-2367  doi: 10.1039/C5CS00837A

    65. [65]

      Wang B, Lv X L, Feng D W, Xie L H, Zhang J, Li M, Xie Y B, Li J R, Zhou H C. J. Am. Chem. Soc., 2016, 138(19): 6204-6216  doi: 10.1021/jacs.6b01663

    66. [66]

      Xu M M, Kong X J, He T, Wu X Q, Xie L H, Li J R. Inorg. Chem., 2018, 57(22): 14260-14268  doi: 10.1021/acs.inorgchem.8b02282

    67. [67]

      Wang Z, Yang J, Li Y S, Zhuang Q X, Gu J L. Chem. Eur. J., 2017, 23(61): 15415-15423  doi: 10.1002/chem.201702534

    68. [68]

      Connett P H, Wetterhahn K E. J. Am. Chem. Soc., 1986, 108(8): 18421847  doi: 10.1002/chin.198632247

    69. [69]

      Brauer S L, Wetterhahn K E. J. Am. Chem. Soc., 1991, 113(8): 30013007  doi: 10.1021/ja00008a031

    70. [70]

      Brauer S L, Hneihen A S, McBride J S, Wetterhahn K E. Inorg. Chem., 1996, 35(2): 373-381  doi: 10.1021/ic941452d

    71. [71]

      Shevchenko N, Zaitsev V, Walcarius A. Environ. Sci. Technol., 2008, 42(18): 6922-6928  doi: 10.1021/es800677b

    72. [72]

      Nataliya Z, Vladimir Z, Alain W. J. Hazard. Mater., 2013, 250-251: 454-461  doi: 10.1016/j.jhazmat.2013.02.019

    73. [73]

      Wang S A, Yu P, Purse B A, Orta M J, Diwu J, Casey W H, Phillips B L, Alekseev E V, Depmeier W, Hobbs D T, Albrecht-Schmitt T E. Adv. Funct. Mater., 2012, 22(11): 2241-2250  doi: 10.1002/adfm.201103081

    74. [74]

      Zhu L, Sheng D P, Xu C, Dai X, Silver M A, Li J, Li P, Wang Y X, Wang Y L, Chen, L H, Xiao C L, Chen J, Zhou R H, Zhang C, Farha O K, Chai Z F, Albrecht-Schmitt T E, Wang S A. J. Am. Chem. Soc., 2017, 139(42): 14873-14876  doi: 10.1021/jacs.7b08632

    75. [75]

      Sheng D P, Zhu L, Xu C, Xiao C L, Wang Y L, Wang Y X, Chen L H, Diwu J, Chen J, Chai Z F, Albrecht-Schmitt T E, Wang S A. Environ. Sci. Technol., 2017, 51(6): 3471-3479  doi: 10.1021/acs.est.7b00339

    76. [76]

      Li Y X, Yang Z X, Wang Y L, Bai Z L, Zheng T, Dai X, Liu S T, Gui D X, Liu W, Chen M, Chen L H, Diwu J, Zhu L Y, Zhou R H, Chai Z F, Albrecht-Schmitt T E, Wang S A. Nat. Commun., 2017, 8(1): 1-11  doi: 10.1038/s41467-016-0009-6

    77. [77]

      Mao J J, Ge M Z, Huang J Y, Lai Y K, Lin C J, Zhang K Q, Meng K, Tang Y X. J. Mater. Chem. A, 2017, 5(23): 11873-11881  doi: 10.1039/C7TA01343D

    78. [78]

      Yang J F, Zhao Q, Li J P, Dong J X. Microporous Mesoporous Mater., 2009, 130(1/2/3): 174-179  doi: 10.1016/j.micromeso.2009.11.001

    79. [79]

      Canioni R, Roch-Marchal C, Sécheresse F, Horcajada P, Serre C, Hardi-Dan M, Férey G, Grenèche J M, Lefebvre F, Chang J S, Hwang Y K, Lebedev O, Turner S, Van Tendeloo G. J. Mater. Chem., 2011, 21(4): 1226-1233  doi: 10.1039/C0JM02381G

    80. [80]

      Li A, Lin R J, Lin C, He B Y, Zheng T T, Lu L B, Cao Y. Carbohydr. Polym., 2016, 148: 272-280  doi: 10.1016/j.carbpol.2016.04.070

    81. [81]

      Mahmoud M E, Amira M F, Seleim S M, Mohamed A K. J. Hazard. Mater., 2020, 381: 120979  doi: 10.1016/j.jhazmat.2019.120979

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    4. [4]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    14. [14]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    15. [15]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(129)
  • Abstract views(4012)
  • HTML views(1891)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return