Citation: Lang-Lang YANG, Fan-Hui MENG, Peng ZHANG, Xiao-Tong LIANG, Zhong LI. Catalytic Performance for CO2 Hydrogenation to Light Olefins over ZrCdOx/SAPO-18 Bifunctional Catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(3): 448-456. doi: 10.11862/CJIC.2021.067 shu

Catalytic Performance for CO2 Hydrogenation to Light Olefins over ZrCdOx/SAPO-18 Bifunctional Catalyst

Figures(7)

  • ZrCdOx metal oxides with various Zr/Cd atomic ratios (nZr/nCd) were prepared by parallel coprecipitation method, the sheet-like SAPO-18 zeolites with molar ratio of SiO2 to Al2O3 (nSiO2/nAl2O3) of 0.1 and 0.01 were hydrothermally synthesized. The metal oxide and SAPO-18 were physically mixed to prepare ZrCdOx/SAPO-18 bifunctional catalyst, and to study the catalytic performance for CO2 hydrogenation to light olefins. Transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption-desorption, temperature-programmed desorption of CO2 (CO2TPD), temperature programmed desorption of ammonia (NH3-TPD) and X-ray photoelectron spectroscopy (XPS) were applied to analyze the catalysts. Compared with the sole ZrO2, the introduction of CdO decreased the BET (Brunauer Emmett Teller) surface area of ZrCdOx. The Zr8Cd1 oxide prepared with nZr/nCd=8 exhibited the small amorphous particles, the strong synergetic effect between Zr and Cd led to the generation of more oxygen vacancies in ZrCdOxoxide, which was beneficial to the adsorption and activation of CO2. The effect of mass ratio of Zr8Cd1 oxide to SAPO-18 (nSiO2/nAl2O3=0.1), and the reaction temperature, pressure and space velocity on catalytic performance were investigated, and the optimal reaction conditions were obtained. Moreover, it is also found that when the ratio of nSiO2/nAl2O3 decreased from 0.1 to 0.01, the content of Brønsted acid reduced, the molar ratio of olefins to paraffin increased from 18.6 to 37.2; however, the content of by-product CO increased rapidly, and the space-time yield of light olefins decreased remarkably.
  • 加载中
    1. [1]

      Guo L S, Sun J, Ge Q J, Tsubaki N. J. Mater. Chem. A, 2018, 6(46): 23244-23262  doi: 10.1039/C8TA05377D

    2. [2]

      Ye R P, Ding J, Gong W B, Argyle M D, Zhong Q, Wang Y J, Russell C K, Xu Z H, Russell A G, Li Q H, Fan M H, Yao Y G. Nat. Commun. , 2019, 10(1): 5698-5713  doi: 10.1038/s41467-019-13638-9

    3. [3]

      Ma Z Q, Porosoff M D. ACS Catal. , 2019, 9(3): 2639-2656  doi: 10.1021/acscatal.8b05060

    4. [4]

      Ronda-Lloret M, Rothenberg G, Shiju N R. ChemSusChem, 2019, 12(17): 3896-3914  doi: 10.1002/cssc.201900915

    5. [5]

      Gao J J, Jia C, Liu B. Catal. Sci. Technol. , 2017, 7(23): 5602-5607  doi: 10.1039/C7CY01549F

    6. [6]

      Sedighi M, Mohammadi M. J. CO2 Util. , 2019, 35: 236-244

    7. [7]

      Tan L, Zhang P P, Cui Y, Suzuki Y, Li H J, Guo Li S, Yang G H, Tsubaki N. Fuel Process. Technol. , 2019, 196: 106174-106179  doi: 10.1016/j.fuproc.2019.106174

    8. [8]

      Hu S, Liu M, Ding F S, Song C S, Zhang G L, Guo X W. J. CO2 Util. , 2016, 15: 89-95  doi: 10.1016/j.jcou.2016.02.009

    9. [9]

      Numpilai T, Witoon T, Chanlek N, Limphirat W, Bonura G, Chareonpanich M, Limtrakul J. Appl. Catal. A, 2017, 547: 219-229  doi: 10.1016/j.apcata.2017.09.006

    10. [10]

      Liu X L, Wang M H, Zhou C, Zhou W, Cheng K, Kang J C, Zhang Q H, Deng W P, Wang Y. Chem. Commun. , 2018, 54(2): 140-143  doi: 10.1039/C7CC08642C

    11. [11]

      Li Z L, Wang J J, Qu Y Z, Liu H L, Tang C Z, Miao S, Feng Z C, An H Y, Li C. ACS Catal. , 2017, 7(12): 8544-8548  doi: 10.1021/acscatal.7b03251

    12. [12]

      Liu X L, Wang M H, Yin H R, Hu J T, Cheng K, Kang J C, Zhang Q H, Wang Y. ACS Catal. , 2020, 10(15): 8303-8314  doi: 10.1021/acscatal.0c01579

    13. [13]

      Gao P, Dang S H, Li S G, Bu X N, Liu Z Y, Qiu M H, Yang C G, Wang H, Zhong L S, Han Y, Liu Q, Wei W, Sun Y H. ACS Catal. , 2018, 8(1): 571-578  doi: 10.1021/acscatal.7b02649

    14. [14]

      Dang S S, Li S G, Yang C G, Chen X Q, Li X P, Zhong L S, Gao P, Sun Y H. ChemSusChem, 2019, 12: 1-11  doi: 10.1002/cssc.201802948

    15. [15]

      LIU R, ZHA F, YANG A M, CHANG Y. Chem. J. Chinese Universities, 2016, 37(5): 964-971
       

    16. [16]

      Dang S S, Gao P, Liu Z Y, Chen X Q, Yang C G, Wang H, Zhong L S, Li S G, Sun Y H. J. Catal. , 2018, 364: 382-393  doi: 10.1016/j.jcat.2018.06.010

    17. [17]

      Wang J J, Tang C Z, Li G N, Han Z, Li Z L, Liu H L, Cheng F, Li C. ACS Catal. , 2019, 9(11): 10253-10259  doi: 10.1021/acscatal.9b03449

    18. [18]

      Jiao F, Li J J, Pan X L, Xiao J P, Li H B, Ma H, Wei M M, Pan Y, Zhou Z Y, Li M R, Miao S, Li J, Zhu Y F, Xiao D, He T, Yang J H, Qi F, Fu Q, Bao X H. Science, 2016, 351(6277): 1065-1068  doi: 10.1126/science.aaf1835

    19. [19]

      Zhang P, Meng F H, Li X J, Yang L L, Ma P C, Li Z. Catal. Sci. Technol. , 2019, 9(20): 5577-5581  doi: 10.1039/C9CY01348B

    20. [20]

      Sun Q M, Xie Z K, Yu J H. Natl. Sci. Rev. , 2018, 5(4): 542-558  doi: 10.1093/nsr/nwx103

    21. [21]

      LI J F, FAN W B, DONG M, HE Y, QIN Z F, WANG J G. Chem. J. Chinese Universities, 2011, 32(3): 765-771
       

    22. [22]

      CUI X Y, WANG J J, PAN M, NING W W, YAN L L, ZHENG J J, LI R F. Chinese J. Inorg. Chem. , 2018, 34(2): 300-308
       

    23. [23]

      Wang P F, Zha F, Yao L, Chang Y. Appl. Clay Sci. , 2018, 163: 249256

    24. [24]

      Huang Y X, Ma H F, Xu Z Q, Qian W X, Zhang H T, Ying W Y. Fuel, 2020, 273: 117771  doi: 10.1016/j.fuel.2020.117771

    25. [25]

      GUO Y Y, LIANG G H, ZHANG Y T, HE Z G, LIANG Y N, LI N, LI X F, DOU T. Chinese J. Inorg. Chem. , 2019, 35(2): 185-193
       

    26. [26]

      Zhong J W, Han J F, Wei Y X, Xu S T, Sun T T, Zeng S, Guo X W, Song C S, Liu Z M. Chinese J. Catal. , 2019, 40(4): 477-485  doi: 10.1016/S1872-2067(19)63281-X

    27. [27]

      ZHAO D P, ZHAO Q S, ZHANG Y, SHI T, YAO H G, YU J Q. Chem. J. Chinese Universities, 2016, 37(2): 342-348
       

    28. [28]

      Su J J, Zhou H B, Liu S, Wang C M, Jiao W Q, Wang Y D, Liu C, Ye Y C, Zhang L, Zhao Y, Liu H X, Wang D, Yang W M, Xie Z K, He M Y. Nat. Commun. , 2019, 10(1): 1297-1305  doi: 10.1038/s41467-019-09336-1

    29. [29]

      Zhang G C, Fan G L, Yang L, Li F. Appl. Catal. A, 2020, 605: 117805117817

    30. [30]

      Eskizeybek V, Avcı A, Chhowalla M. Cryst. Res. Technol. , 2011, 46(10): 1093-1100  doi: 10.1002/crat.201100221

    31. [31]

      Barad C, Kimmel G, Hayun H, Shamir D, Shandalov M, Shekel G, Gelbstein Y. J. Mater. Sci. , 2018, 53(18): 12741-12749  doi: 10.1007/s10853-018-2556-1

    32. [32]

      Zhao D P, Zhang Y, Peng Y H, Yu J Q. Catal. Lett. , 2016, 146(11): 2261-2267  doi: 10.1007/s10562-016-1854-y

    33. [33]

      Bai B, Guan W S, Li Z Y, Li Puma G. Mater. Res. Bull. , 2011, 46(1): 26-31  doi: 10.1016/j.materresbull.2010.10.002

    34. [34]

      Raveendra G, Li C M, Cheng Y, Meng F H, Li Z. New J. Chem. , 2018, 42(6): 4419-4431  doi: 10.1039/C7NJ04734G

    35. [35]

      Cheng K, Gu B, Liu X L, Kang J C, Zhang Q H, Wang Y. Angew. Chem. Int. Ed. , 2016, 55(15): 4725-4728  doi: 10.1002/anie.201601208

    36. [36]

      Chen J S, Thomas J M, Wright P A, Townsend R P. Catal. Lett. , 1994, 28(2): 241-248

    37. [37]

      King P D C, Veal T D, Schleife A, Zúñiga-Pérez J, Martel B, Jefferson P. H, Fuchs F, Muñoz Sanjosé V, Bechstedt F, Mcconville C F. Phys. Rev. B, 2009, 79(20): 205205-205211  doi: 10.1103/PhysRevB.79.205205

    38. [38]

      Liu X L, Zhou W, Yang Y D, Cheng K, Kang J C, Zhang L, Zhang G Q, Min X J, Zhang Q H, Wang Y. Chem. Sci. , 2018, 9(20): 4708-4718  doi: 10.1039/C8SC01597J

  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    18. [18]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    19. [19]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    20. [20]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

Metrics
  • PDF Downloads(15)
  • Abstract views(1313)
  • HTML views(319)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return