Citation: Tong CHANG, Hao-tong NIU, Rui-jing MA, Hui-xiang WANG, Bao-liang LU:. Photocatalytic Degradation of Quasi-phenothiazine Dyes by Fe Species Modified Urchin-like Nb2O5 Nanospheres[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(4): 717-727. doi: 10.11862/CJIC.2021.060 shu

Photocatalytic Degradation of Quasi-phenothiazine Dyes by Fe Species Modified Urchin-like Nb2O5 Nanospheres

Figures(12)

  • Herein, Fe species modified urchin-like Nb2O5 nanospheres were prepared by directly introducing Fe3+ cations into the system on the basis of synthesizing urchin-like Nb2O5 nanospheres via hydrothermal method. The synthesized samples were characterized in detail by power X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FT-IR), scanning electron microscopy(SEM), transmission electron microscopy(TEM), N2 adsorption-desorption test, X-ray photoelectron spectroscopy(XPS), UV-Vis absorption spectroscopy(UV-Vis) and photoluminescence emission spectroscopy(PL). The results indicated that Fe3+ cations had no obvious effect on the morphology and hexagonal structure of Nb2O5, but could increase the specific surface area of samples. The Fe species of Fe2O3 and Fe(Ⅱ)NbxOy with low crystallinity were most likely to be form in situ on the Nb2O5 surface during the experiment and uniformly dispersed. Compared with pure urchin-like Nb2O5 nanospheres, the Fe species modified Nb2O5 samples exhibited high photocatalytic activity under full light irradiation, and they could selectively degrade quasiphenothiazine dyes of methylene blue(MB) and toluidine blue(TB) with a high efficiency.One of the reasons is that Fe species can form coordination adsorption with N and S in quasi-phenothiazine dye molecules. Moreover, Fe species can separate photoexcited electrons of Nb2O5 and then decrease the recombination of photoexcited electron/hole by their matched conduction band(CB) with Nb2O5, and leading to the improvement of hole oxidation activity. Furthermore, Fenton reaction under the presence of trace H2O2 quickly consumes photoelectrons and generates a number of ·OH radicals to oxidize dye molecules.
  • 加载中
    1. [1]

      Gupta V K, Suhas. J. Environ. Manage. , 2009, 90: 2313-2349  doi: 10.1016/j.jenvman.2008.11.017

    2. [2]

      Cao Y, Wang H X, Ren X B, Li F, Wang J, Ding R M, Wang L C, Wu J B, Liu Z, Lv B L. CrystEngComm, 2019, 21: 5106-5114  doi: 10.1039/C9CE00917E

    3. [3]

      Zhang F B, Wang X M, Liu H N, Liu C L, Wan Y, Long Y Z, Cai Z Y. Appl. Sci. , 2019, 9: 2489-2531  doi: 10.3390/app9122489

    4. [4]

      WANG B, WANG X H, LIU Z L, DONG Z, WANG X H, DUAN L M, XU L, LIU Z R. Chinese J. Inorg. Chem. , 2020, 36(10): 1865-1872  doi: 10.11862/CJIC.2020.220
       

    5. [5]

      Widiyandari H, Purwanto A, Balgis R, Ogi T, Okuyama K. Chem. Eng. J. , 2012, 180: 323-329  doi: 10.1016/j.cej.2011.10.095

    6. [6]

      LopesO F, Paris E C, Ribeiro C. Appl. Catal. B, 2014, 144: 800-808  doi: 10.1016/j.apcatb.2013.08.031

    7. [7]

      Yan J Q, Wu G J, Guan N J, Li L D. Appl. Catal. B, 2014, 152-153: 280-288  doi: 10.1016/j.apcatb.2014.01.049

    8. [8]

      MEI Q F, ZHANG F Y, WANG N, LU W S, SU X T, WANG W, WU R L. Chinese J. Inorg. Chem. , 2019, 35(8): 1321-1339
       

    9. [9]

      YU Y Y, YU M Y, ZHANG Y, SUN W W, LIU Y. Chinese J. Inorg. Chem. , 2013, 29(8): 1657-1662
       

    10. [10]

      Xi G C, Ye J H, Ma Q, Su N, Bai H, Wang C. J. Am. Chem. Soc. , 2012, 134: 6508-6511  doi: 10.1021/ja211638e

    11. [11]

      Gu Z J, Zhai T Y, Gao B F, Sheng X H, Wang Y B, Fu H B, Ma Y, Yao J N. J. Phys. Chem. B, 2006, 110: 23829-23836  doi: 10.1021/jp065170y

    12. [12]

      Xiao Y H, Liu S J, Li F, Zhang A Q, Zhao J H, Fang S M, Jia D Z. Adv. Funct. Mater. , 2012, 22: 4052-4059  doi: 10.1002/adfm.201200519

    13. [13]

      Li B W, Li Q Y, Gupa B, Guan Z J, Zhang L, Zhang M. J. Alloys Compd. , 2020, 837: 155547-155556  doi: 10.1016/j.jallcom.2020.155547

    14. [14]

      Gupta S P, Gosavi S W, Late D J, Qiao Q Q, Walke P S. Electrochim. Acta, 2020, 354: 136626-136635  doi: 10.1016/j.electacta.2020.136626

    15. [15]

      Chen J L, Wang H, Huang G L, Zhang Z Q, Han L F, Song W, Li M Y, Zhang Y H. J. Alloys Compd. , 2017, 728: 19-28  doi: 10.1016/j.jallcom.2017.08.266

    16. [16]

      HU H L, WANG S, HOU M S, LIU F S, WANG T Z, LI T L, DONG Q Q, ZHANG X. Acta Phys. -Chim. Sin. , 2017, 33(3): 590-601
       

    17. [17]

      Pai Y H, Fang S Y. J. Power Sources, 2013, 230: 321-326  doi: 10.1016/j.jpowsour.2012.12.078

    18. [18]

      Bi D Q, Xu Y M. Langmuir, 2011, 27: 9359-9366  doi: 10.1021/la2012793

    19. [19]

      Wang H X, Wang C H, Cui X M, Qin L, Ding R M, Wang L C, Liu Z, Zheng Z F, Lv B L. Appl. Catal. B, 2018, 221: 169-178  doi: 10.1016/j.apcatb.2017.09.011

    20. [20]

      Bi D Q, Xu Y M. J. Mol. Catal. A: Chem. , 2013, 367: 103-107  doi: 10.1016/j.molcata.2012.09.031

    21. [21]

      Wang H X, Tang M X, Shi F L, Ding R M, Wang L C, Wu J B, Li X K, Liu Z, Lv B L. ACS Appl. Mater. Interfaces, 2020, 12: 38140-38152  doi: 10.1021/acsami.0c10118

    22. [22]

      Prado A G S, Bolzon L B, Pedroso C P, Moura AO, Costa L L. Appl. Catal. B, 2008, 82: 219-224  doi: 10.1016/j.apcatb.2008.01.024

    23. [23]

      Leite E R, Vila C, Bettini J, Longo E. J. Phys. Chem. B, 2006, 110; 18088-18090  doi: 10.1021/jp0642544

    24. [24]

      Daniel M F, Desbat B, Lassegues J C. J. Solid State Chem. , 1987, 67: 235-247  doi: 10.1016/0022-4596(87)90359-8

    25. [25]

      Liu Z, Lv B L, Wu D, Zhu Y, Sun Y H. CrystEngComm, 2012, 14: 4074-4080  doi: 10.1039/c2ce06683a

    26. [26]

      Ribeiro M C M, Amorim C C, Moreira R F P M, Oliveira L C A, Henriques A B, Leao M M D. Environ. Sci. Pollut. Res. , 2018, 25: 27737-27747  doi: 10.1007/s11356-018-2006-2

    27. [27]

      Kim H E, Lee J, Lee H, Lee C. Appl. Catal. B, 2012, 115-116: 219-224  doi: 10.1016/j.apcatb.2011.12.027

    28. [28]

      CHEN X Y. Thesis for the Master of Wuhan University of Science and Technology. 2017.

    29. [29]

      Liu Z, Lv B L, Wu D, Sun Y H, Xu Y. Eur. J. Inorg. Chem. , 2012(25): 4076-4081

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    10. [10]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    11. [11]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(1)
  • Abstract views(847)
  • HTML views(168)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return