Citation: Lian-Yang ZHANG, Jun-Jie WU, Yue MENG, Sheng-Jie XIA. Direct Z-scheme Heterojunction CeO2@NiAl-LDHs for Photodegradation of Rhodamine B and Photocatalytic Hydrogen Evolution: Performance and Mechanism[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(2): 316-326. doi: 10.11862/CJIC.2021.053 shu

Direct Z-scheme Heterojunction CeO2@NiAl-LDHs for Photodegradation of Rhodamine B and Photocatalytic Hydrogen Evolution: Performance and Mechanism

Figures(8)

  • Herein, a direct Z-scheme heterojunction CeO2@NiAl-LDHs (LDHs=layered double hydroxides) with core-shell structure was constructed. It shows high oxidative degradation of rhodamine B (36.91 mg·g-1·h-1) and hydrogen production by photoreduction (14.08 mmol·g-1·h-1). Density functional theory (DFT) calculation shows that there was a built-in electric field in the heterojunction, which promotes the electron transfer from LDHs to CeO2. Surface photovoltage spectroscopy (SPV) and transient photovoltage spectra (TPV) confirmed that the presence of heterojunction accelerated the number of electron transfer, and the recombination of electron and hole was obviously inhibited, so as to participate in oxidation and reduction more. Thus, it makes CeO2@NiAl LDHs heterojunction photocatalyst have high photocatalytic activity for photodegradation of rhodamine B and hydrogen production from water.
  • 加载中
    1. [1]

      Zhang X Y, Wang X, Chai J N, Xue S, Wang R X, Jiang L, Wang J, Zhang Z H, Dionysiou D D. Appl. Catal. B, 2020, 272:119017  doi: 10.1016/j.apcatb.2020.119017

    2. [2]

      Lan Y L, Li Z S, Li D H, Xie W Y, Yan G X, Guo S H. Chem. Eng. J., 2020, 392:123686  doi: 10.1016/j.cej.2019.123686

    3. [3]

      Wang Y, Zhang Z Z, Zhang L N, Luo Z B, Shen J N, Lin H X, Long J L, Wu J C S, Fu X Z, Wang X X, Li C. J. Am. Chem. Soc., 2018, 140:14595-14598  doi: 10.1021/jacs.8b09344

    4. [4]

      Meng J C, Chen Q, Lu J Q, Liu H. ACS Appl. Mater. Interfaces, 2019, 11:550-562  doi: 10.1021/acsami.8b14282

    5. [5]

      Niu X H, Bai X W, Zhou Z B, Wang J L. ACS Catal., 2020, 10:1976-1983  doi: 10.1021/acscatal.9b04753

    6. [6]

      Hu J D, Chen D Y, Mo Z, Li N J, Xu Q F, Li H, He J H, Xu H, Lu J M. Angew. Chem. Int. Ed., 2019, 58:2073-2077  doi: 10.1002/anie.201813417

    7. [7]

      Ye K H, Li Y, Yang H, Huang Y C, Zhang S Q, Ji H B. Appl. Catal. B, 2019, 259:118085

    8. [8]

      Yue X Z, Yi S S, Wang R W, Zhang Z T, Qiu S L. Nano Energy, 2018, 47:463-473  doi: 10.1016/j.nanoen.2018.03.014

    9. [9]

      Che W, Cheng W R, Yao T, Tang F M, Liu W, Su H, Huang Y Y, Liu Q H, Liu J K, Hu F C, Pan Z Y, Sun Z H, Wei S Q. J. Am. Chem. Soc., 2017, 139:3021-3026  doi: 10.1021/jacs.6b11878

    10. [10]

      Ewelina K N, Antoni W M. Appl. Catal. B, 2019, 253:179-186

    11. [11]

      Wang K, Li J, Zhang G K. ACS Appl. Mater. Interface, 2019, 11:27686-27696  doi: 10.1021/acsami.9b05074

    12. [12]

      Chen C R, Zeng H Y, Yi M Y, Xiao G F, Xu S, Shen S G, Feng B. Appl. Catal. B, 2019, 252:47-54  doi: 10.1016/j.apcatb.2019.03.083

    13. [13]

      Jiang W S, Zong X P, An L, Hua S X, Miao X, Luan S L, Wen Y J, Tao F F, Sun Z C. ACS Catal., 2018, 8:2209-2217

    14. [14]

      Zhao W, Feng Y, Huang H B, Zhou P C, Li J, Zhang L L, Dai B L, Xu J M, Zhu F X, Sheng N, Leung D Y C. Appl. Catal. B, 2019, 245:448-458

    15. [15]

      Zhang G P, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M. Angew. Chem. Int. Ed., 2020, 59:8255-8261  doi: 10.1002/anie.202000503

    16. [16]

      Yang C, Zhang G H, Meng Y, Pan G X, Ni Z M, Xia S J. J. Hazard. Mater., 2021, 408:124908

    17. [17]

      Kumar S, Yadav N, Kumar P, Ganguli A K. Inorg. Chem., 2018, 57:15112-15122

    18. [18]

      Zhang G H, Zhang X Q, Meng Y, Pan G X, Ni N M, Xia S J. Chem. Eng. J., 2020, 392:123684

    19. [19]

      Wu Y R, Sun X J, Yang Y, Li J M, Zhang Y, Qin D. Acc. Chem. Res., 2017, 50:1774-1784

    20. [20]

      Fu S F, Zheng Y, Zhou X B, Ni N M, Xia S J. J. Hazard. Mater., 2019, 363:41-54

    21. [21]

      Meng Y, Chen Y F, Zhou X B, Pan G X, Xia S J. Int. J. Hydrogen Energy, 2020, 45:464-476

    22. [22]

      SHEN X R, MENG Y, XIA S J. Chinese J. Inorg. Chem., 2019, 35(7):1239-1247
       

    23. [23]

      Nakagawa Y, Tazawa S, Wang T M, Tamura M, Hiyoshi N, Okumura K, Tomishige K. ACS Catal., 2018, 8:584-595

    24. [24]

      Meng Y, Zhang X F, Pan G X, Xia S J, Ni Z M. J. Hazard. Mater., 2018, 350:144-153

    25. [25]

      Xia S J, Fang L, Meng Y, Zhang L Y, Zhang X Q, Yang C, Ni Z M. Appl. Catal. B, 2020, 272:118949

    26. [26]

      Tang H D, Zhang W J, Meng Y, Xia S J. Appl. Catal. B, 2021, 285:119851

    27. [27]

      Wang Y, Meng Y, Ni Z M, Xia S J. Int. J. Hydrogen Energy, 2021, 46:848-457

    28. [28]

      Xia S J, Zhang G H, Meng Y, Yang C, Ni Z M, Hu J. Appl. Catal. B, 2020, 278:119266

    29. [29]

      Nayak S, Swain G, Parida K. ACS Appl. Mater. Interfaces, 2019, 11:20923-20942

    30. [30]

      Bi L L, Gao X P, Zhang L J, Wang D J, Zou X X, Xie T F. ChemSusChem, 2018, 1:276-284

    31. [31]

      Mora-Seró I, Dittrich T, Belaidi A, Garcia-Belmonte G, Bisquert J. J. Phys. Chem. B, 2005, 109:14932-14938

    32. [32]

      Li S, Zhang L, Jiang T, Chen L P, Lin Y H, Wang D J, Xie T F. Chem. Eur. J., 2014, 20:311-316

  • 加载中
    1. [1]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    2. [2]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    5. [5]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    10. [10]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    15. [15]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    20. [20]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

Metrics
  • PDF Downloads(24)
  • Abstract views(1828)
  • HTML views(539)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return