Citation: Hui-Hui CUI, Tong-Ming SUN, Miao WANG, Lei CHEN, Yan-Feng TANG. Magnetic Anisotropy of High-Coordinated 3d Transition-Metal Single-Ion Magnets[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(2): 193-205. doi: 10.11862/CJIC.2021.044 shu

Magnetic Anisotropy of High-Coordinated 3d Transition-Metal Single-Ion Magnets

Figures(16)

  • For its magnetic bistability and slow relaxation process, single-ion magnets (SIMs) have unique potential applications in high-density information storage, quantum computation and molecular spintronics. 3d transitionmetal-based single ion magnets (3d-SIMs) have attracted intensive interest because of their simple structure, easily exploring the magneto-structural relationship. Up to now, most of the 3d-SIMs reported in the literature usually have low coordination numbers, while knowledge on the high-coordinated (sevenand eight-coordinated) 3d-SIMs is still quite limited, especially for its efficient design and controllable manipulation. This project investigates the singleion magnetic anisotropy from three aspects, including basic properties, experimental characterization and theoretical calculation. Based on the research results in recent years, we summarize the coordination environment, magnetic anisotropy and slow magnetic relaxation behavior of the high-coordinated 3d-SIMs, and analyze the influence of the coordination environment, including coordination geometry and coordinated atoms, on the magnetic anisotropy of highcoordinated 3d-SIMs. This work will provide new routes in designing new high-coordinated 3d-SIMs with excellent properties.
  • 加载中
    1. [1]

      Buschowand K H J, de Boer F R. Physics of Magnetic Materials.[J]. World Scientific, 1985.

    2. [2]

      Sessoli R, Gatteschi D, Caneschi A, Novak M A. Nature, 1993, 365:141-143  doi: 10.1038/365141a0

    3. [3]

      Leuenberger M N, Loss D. Nature, 2001, 410:789-793  doi: 10.1038/35071024

    4. [4]

      Bogani L, Wernsdorfer W. Nat. Mater., 2008, 7:179-186  doi: 10.1038/nmat2133

    5. [5]

      Wernsdorfer W, Sessoli R. Science, 1999, 284:133-135  doi: 10.1126/science.284.5411.133

    6. [6]

      Waldmann O. Inorg. Chem., 2007, 46:10035-10037  doi: 10.1021/ic701365t

    7. [7]

      Feltham H L C, Brooker S. Coord. Chem. Rev., 2014, 276:1-33  doi: 10.1016/j.ccr.2014.05.011

    8. [8]

      Feng M, Tong M L. Chem. Eur. J., 2018, 24:7574-7594  doi: 10.1002/chem.201705761

    9. [9]

      Freedman D E, Harman W H, Harris T D, Long G J, Chang C J, Long J R. J. Am. Chem. Soc., 2010, 132:1224-1225  doi: 10.1021/ja909560d

    10. [10]

      Bara A K, Pichona C, Suttera J P. Coord. Chem. Rev., 2016, 308:346-380  doi: 10.1016/j.ccr.2015.06.013

    11. [11]

      Bunting P C, Atanasov M, Damgaard-Møller E, Perfetti M, Crassee I, Orlita M, Overgaard J, van Slageren J, Neese F, Long J R. Science, 2018, 362:eaat7319  doi: 10.1126/science.aat7319

    12. [12]

      Yao X N, Du J Z, Zhang Y Q, Leng X B, Yang M W, Jiang S D, Wang Z X, Ouyang Z W, Deng L, Wang B W, Gao S. J. Am. Chem. Soc., 2017, 139:373-380  doi: 10.1021/jacs.6b11043

    13. [13]

      Power P P. Chem. Rev., 2012, 112:3482-3507  doi: 10.1021/cr2004647

    14. [14]

      Mannini M, Pineider F, Danieli C, Totti F, Sorace L, Arrio M A, Otero E, Joly L, Cezar J C, Cornia A, Sessoli R. Nature, 2010, 468:417-421  doi: 10.1038/nature09478

    15. [15]

      Coulon C, Miyasaka H, Clérac R. Struct. Bonding, 2006, 122:163-206

    16. [16]

      Ribas J. Coordination Chemistry. Weinheim:Wiley-VCH, 2008.

    17. [17]

      Gómez-Coca S, Urtizberea A, Cremades E, Alonso P J, Camón A, Ruiz E, Luis F. Nat. Commun., 2014, 5:4300  doi: 10.1038/ncomms5300

    18. [18]

      Gerloch M. Magnetism and Ligand-Field Analysis. Cambridge:Cambridge University Press, 1983.

    19. [19]

      Gatteschi D, Barra A L, Caneschi A, Cornia A, Sessoli R, Sorace L. Coord. Chem. Rev., 2006, 250:1514-1529  doi: 10.1016/j.ccr.2006.02.006

    20. [20]

      Duboc C, Phoeung T, Zein S, Pecaut J, Collomb M N, Neese F. Inorg. Chem., 2007, 46:4905-4916  doi: 10.1021/ic062384l

    21. [21]

      Andres H, Basler R, Güdel H U, Aromí G, Christou G, Büttner H, Ruffléet B. J. Am. Chem. Soc., 2000, 122:12469-12477  doi: 10.1021/ja0009424

    22. [22]

      Caciuffo R, Guidi T, Amoretti G, Carretta S, Liviotti E, Santini P, Mondelli C, Timco G, Muryn C A, Winpenny R E P. Phys. Rev. B, 2005, 71:174407  doi: 10.1103/PhysRevB.71.174407

    23. [23]

      Pedersen K S, Woodruff D N, Bendix J, Clérac R. Experimental Aspects of Lanthanide Single-molecule Magnet Physics, in:Lanthanides and Actinides in Molecular Magnetism. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2015:125-152

    24. [24]

      Kahn O. Acc. Chem. Res., 2000, 33:647-657  doi: 10.1021/ar9703138

    25. [25]

      Andres H, Bominaar E L, Smith J M, Eckert N A, Holland P L, Munck E. J. Am. Chem. Soc., 2002, 124:3012-3025  doi: 10.1021/ja012327l

    26. [26]

      Bart S C, Chłopek K, Bill E, Bouwkamp M W, Lobkovsky E, Neese F, Wieghardt K, Chirik P J. J. Am. Chem. Soc., 2006, 128:13901-13912  doi: 10.1021/ja064557b

    27. [27]

      Harman W H, Harris T D, Freedman D E, Fong H, Chang A, Rinehart J D, Ozarowski A, Sougrati M T, Grandjean F, Long G J. J. Am. Chem. Soc., 2010, 132:18115-18126  doi: 10.1021/ja105291x

    28. [28]

      Bernot K, Luzon J, Bogani L, Etienne M, Sangregorio C, Shanmugam M, Caneschi A, Sessoli R, Gatteschi D. J. Am. Chem. Soc., 2009, 131:5573-5579  doi: 10.1021/ja8100038

    29. [29]

      Boulon M E, Cucinotta G, Luzon J, Degl'Innocenti C, Perfetti M, Bernot K, Calvez G, Caneschi A, Sessoli R. Angew. Chem. Int. Ed., 2013, 52:350-354  doi: 10.1002/anie.201205938

    30. [30]

      Chen L, Zhou J J, Cui H H, Yuan A H, Wang Z X, Zhang Y Q, Ouyang Z W, Song Y. Dalton Trans., 2018, 47:2506-2510  doi: 10.1039/C7DT04651K

    31. [31]

      Lloret F, Julve M, Cano J, Ruiz-Garcia R, Pardo E. Inorg. Chim. Acta, 2008, 361:3432-3445  doi: 10.1016/j.ica.2008.03.114

    32. [32]

      Titiš J, Boča R. Inorg. Chem., 2011, 50:11838-11845  doi: 10.1021/ic202108j

    33. [33]

      Chilton N F, Anderson R P, Turner L D, Soncini A, Murray K S. J. Comput. Chem., 2013, 34:1164-1175  doi: 10.1002/jcc.23234

    34. [34]

      Noodleman L, Baerends E J. J. Am. Chem. Soc., 1984, 106:2316-2327  doi: 10.1021/ja00320a017

    35. [35]

      Malmqvist P Å, Roos B O. Chem. Phys. Lett., 1989, 155:189-194  doi: 10.1016/0009-2614(89)85347-3

    36. [36]

      Wolinski K, Pulay P. J. Chem. Phys., 1989, 90:3647-3659  doi: 10.1063/1.456696

    37. [37]

      Andersson K, Malmqvist P Å, Roos B O, Sadlej A J, Wolinski K. J. Phys. Chem., 1990, 94:5483-5488  doi: 10.1021/j100377a012

    38. [38]

      Andersson K, Malmqvist P Å, Roos B O. J. Chem. Phys., 1992, 96:1218-1226  doi: 10.1063/1.462209

    39. [39]

      Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu J P. J. Chem. Phys., 2001, 114:10252-10264  doi: 10.1063/1.1361246

    40. [40]

      Angeli C, Cimiraglia R, Malrieu J P. Chem. Phys. Lett., 2001, 350:297-305  doi: 10.1016/S0009-2614(01)01303-3

    41. [41]

      Angeli C, Cimiraglia R, Malrieu J P. J. Chem. Phys., 2002, 117:9138-9153  doi: 10.1063/1.1515317

    42. [42]

      Ganyushin D, Neese F. J. Chem. Phys., 2006, 125:024103  doi: 10.1063/1.2213976

    43. [43]

      Maurice R, de Graaf C, Guihéry N. J. Chem. Phys., 2010, 133:084307  doi: 10.1063/1.3480014

    44. [44]

      Bar A K, Pichon C, Gogoi N, Duhayon C, Ramasesha S, Sutter J P. Chem. Commun., 2015, 51:3616-3619  doi: 10.1039/C4CC10182K

    45. [45]

      Bar A K, Gogoi N, Pichon C, Goli V M L D P, Thlijeni M, Duhayon C, Suaud N, Guihéry N, Barra A L, Ramasesha S, Sutter J P. Chem. Eur. J., 2017, 23:4380-4396  doi: 10.1002/chem.201605549

    46. [46]

      Shao D, Zhao X H, Zhang S L, Wu D Q, Wei X Q, Wang X Y. Inorg. Chem. Front., 2015, 2:846-853  doi: 10.1039/C5QI00089K

    47. [47]

      Huang X C, Zhou C, Shao D, Wang X Y. Inorg. Chem., 2014, 53:12671-12673  doi: 10.1021/ic502006s

    48. [48]

      Shao D, Zhang, S L, Shi L, Zhang Y Q, Wang X Y. Inorg. Chem., 2016, 55:10859-10869  doi: 10.1021/acs.inorgchem.6b00854

    49. [49]

      Shao D, Shi L, Zhang S L, Zhao X H, Wu D Q, Wei X Q, Wang X Y. CrystEngComm, 2016, 18:4150-4157  doi: 10.1039/C5CE02594J

    50. [50]

      Shao D, Shi L, Shen F X, Wang X Y. CrystEngComm, 2017, 19:5707-5711  doi: 10.1039/C7CE01436H

    51. [51]

      Shao D, Zhou Y, Pi Q, Shen F X, Yang S R, Zhang S L, Wang X Y. Dalton Trans., 2017, 46:9088-9096  doi: 10.1039/C7DT01893B

    52. [52]

      Habib F, Korobkov I, Murugesu M. Dalton Trans., 2015, 44:6368-6373  doi: 10.1039/C5DT00258C

    53. [53]

      Mondal A, Kharwar A K, Konar S. Inorg. Chem., 2019, 58:10686-10693  doi: 10.1021/acs.inorgchem.9b00615

    54. [54]

      Mondal A K, Mondal A, Dey B, Konar S. Inorg. Chem., 2018, 57:9999-10008  doi: 10.1021/acs.inorgchem.8b01162

    55. [55]

      Kopotkov V A, Korchagin D V, Sasnovskaya V D, Gilmutdinov I F, Yagubskii E B. Magnetochemistry, 2019, 5:58  doi: 10.3390/magnetochemistry5040058

    56. [56]

      Antal P, Drahoš B, Herchel R, Travníček Z. Inorg. Chem., 2016, 55:5957-5972  doi: 10.1021/acs.inorgchem.6b00415

    57. [57]

      Drahoš B, Herchel R, Travníček Z. Inorg. Chem., 2017, 56:5076-5088  doi: 10.1021/acs.inorgchem.7b00235

    58. [58]

      Antal P, Drahoš B, Herchel R, Trávníček Z. Eur. J. Inorg. Chem., 2018, 38:4286-4297

    59. [59]

      Drahoš B, Císařová I, Laguta O, Santana V T, Neugebauer P, Herchel R. Dalton Trans., 2020, 49:4425-4440  doi: 10.1039/D0DT00166J

    60. [60]

      Lou H D, Yin L, Zhang B Q, Ouyang Z W, Li B, Wang Z X. Inorg. Chem., 2018, 57:7757-7762  doi: 10.1021/acs.inorgchem.8b00812

    61. [61]

      Uchida K, Cosquer G, Sugisaki K, Matsuoka H, Sato K, Breedlove B K, Yamashita M. Dalton Trans., 2019, 48:12023-12030  doi: 10.1039/C8DT02150C

    62. [62]

      Hay M A, McMonagle C J, Wilson C, Probert M R, Murrie M. Inorg. Chem., 2019, 58:9691-9697  doi: 10.1021/acs.inorgchem.9b00515

    63. [63]

      Chen L, Chen S Y, Sun Y C, Guo Y M, Yu L, Chen X T, Wang Z X, Ouyang Z W, Song Y, Xue Z L. Dalton Trans., 2015, 44:11482-11490  doi: 10.1039/C5DT00785B

    64. [64]

      Wang J, Cui H H, Zhang Y Q, Chen L, Chen X T. Polyhedron, 2018, 154:148-155  doi: 10.1016/j.poly.2018.07.050

    65. [65]

      Chen L, Cui H H, Stavretis S E, Hunter S C, Zhang Y Q, Chen X T, Sun Y C, Wang Z X, Song Y, Podlesnyak A A, Ouyang Z W, Xue Z L. Inorg. Chem., 2016, 55:12603-12617  doi: 10.1021/acs.inorgchem.6b01544

    66. [66]

      Yi G J, Cui H H, Zhang C Y, Zhao W, Chen L, Zhang Y Q, Chen X T, Song Y, Yuan A H. Dalton Trans., 2020, 49:2063-2067  doi: 10.1039/C9DT04881B

    67. [67]

      Yi G J, Zhang C Y, Zhao W, Cui H H, Chen L, Wang Z X, Chen X T, Yuan A H, Liu Y Z, Ouyang Z W, Dalton Trans., 2020, 49: 7620-7627

    68. [68]

      Huang X C, Xu R, Chen Y Z, Zhang Y Q, Shao D. Chem.-Asian J., 2020, 15:279-286  doi: 10.1002/asia.201901395

    69. [69]

      Ruamps R, Batchelor L J, Maurice R, Gogoi N, Jimenez-Lozano P, Guihery N, de Graaf C, Barra A L, Sutter J P, Mallah T. Chem. Eur. J., 2013, 19:950-956  doi: 10.1002/chem.201202492

    70. [70]

      Chen L, Wang J, Wei J M, Wernsdorfer W, Chen X T, Zhang Y Q, Song Y, Xue Z L. J. Am. Chem. Soc., 2014, 136:12213-12216  doi: 10.1021/ja5051605

    71. [71]

      Wei J M, Zhang Y Q. Inorg. Chem., 2015, 54:1203-1205  doi: 10.1021/ic502840s

    72. [72]

      Stavretis S E, Moseley D H, Fei F, Cui H H, Cheng Y Q, Podlesnyak A A, Wang X P, Daemen L L, Hoffmann C M, Ozerov M, Lu Z G, Thirunavukkuarasu K, Smirnov D, Chang T, Chen Y S, Ramirez-Cuesta A J, Chen X T, Xue Z L. Chem. Eur. J., 2019, 25:15846-15857  doi: 10.1002/chem.201903635

    73. [73]

      Xiang J, Liu J J, Chen X X, Jia L H, Yu F, Wang B W, Gao S, Lau T C. Chem. Commun., 2017, 53:1474-1477  doi: 10.1039/C6CC09801K

    74. [74]

      Jin X X, Chen X X, Xiang J, Chen Y Z, Jia L H, Wang B W, Cheng S C, Zhou X, Leung C F, Gao S. Inorg. Chem., 2018, 57:3761-3774  doi: 10.1021/acs.inorgchem.7b03071

    75. [75]

      Li G L, Wu S Q, Zhang L F, Wang Z X, Ouyang Z W, Ni Z H, Su S Q, Yao Z S, Li J Q, Sato O. Inorg. Chem., 2017, 56:8018-8025  doi: 10.1021/acs.inorgchem.7b00765

    76. [76]

      Huang X C, Qi Z Y, Ji C L, Guo Y M, Yan S C, Zhang Y Q, Shao D, Wang X Y. Dalton Trans., 2018, 47:8940-8948  doi: 10.1039/C8DT01829D

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    4. [4]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    5. [5]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    8. [8]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    11. [11]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    18. [18]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    19. [19]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    20. [20]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

Metrics
  • PDF Downloads(21)
  • Abstract views(1837)
  • HTML views(460)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return