Citation: Tian-Ru HAN, Jing-Jing WU, Zi-Xin QU, Xin TANG. Pyrochlore Structure Y2-xMgxRu2O7-δ (x=0.05, 0.1, 0.15): Preparation and OER Catalytic Performance[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(2): 285-294. doi: 10.11862/CJIC.2021.043 shu

Pyrochlore Structure Y2-xMgxRu2O7-δ (x=0.05, 0.1, 0.15): Preparation and OER Catalytic Performance

  • Corresponding author: Xin TANG, xtang@glut.edu.cn
  • Received Date: 30 August 2020
    Revised Date: 9 December 2020

Figures(9)

  • Herein, pyrochlore structure Y2-xMgxRu2O7-δ (YMRO-x, x=0.05, 0.1, 0.15) catalysts were prepared by solgel method. The X-ray photoelectron spectroscopy was employed to analyze the surface chemical composition and valence state of as-synthesized YMRO. The results showed that oxygen defects were increased when Mg2+ partially substituted Y3+ of A site in pyrochlore (A2B2O7-δ). Especially, YMRO-0.1 catalyst possessed the most extraordinary performance in oxygen evolution reaction (OER). Reaching current density of 10 mA·cm-2 only required 265 mV overpotential, outperformed the RuO2 (358 mV), Y2Ru2O7-δ (294 mV), YMRO-0.05 (282 mV) and YMRO-0.15 (281 mV). The Tafel slope of YMRO-0.1 was 45 mV·dec-1, much smaller than that of RuO2 (88 mV·dec-1), YRO (64 mV·dec-1), YMRO-0.05 (51 mV·dec-1) and YMRO-0.15 (52 mV·dec-1), having the fastest kinetic process. Turning to stability test of YMRO-0.1, the potential moved little in 12 h, compared with Y2Ru2O7-δ which shifted up 30 mV under acidic environment. Moreover, first principle calculation indicated that the substitution atom MgY formed a complex with oxygen vacancies, favored the formation of oxygen vacancies, narrowed the band gap, and lowered the charge-transfer-energy. In addition, the excellent OER reactivity can be partly attributed to the Ru5+ ions. Due to the introduction of Mg, the Ru4+ ions at central active site was oxidized to Ru5+ ions, donating electron to surface and accelerating the process of oxygen evolution reaction. As a result, the active sites also minimized Gibbs free energy of oxygen radical desorption, which promoted the OER. Based on the results, YMRO should be a promising OER catalytic material which can stably work in acid environment.
  • 加载中
    1. [1]

      Montoya J H, Seitz L C, Chakthranont P, Vojvodic A, Jaramillo T F, Norskov J K. Nat. Mater., 2016, 16:70-81

    2. [2]

      Stamenkovic V R, Strmcnik D, Lopes P P, Markovic N M. Nat. Mater., 2016, 16:57-69

    3. [3]

      Khajehsaeidi Z, Sangpour P, Ghaffarinejad A. Int. J. Hydrogen Energy, 2019, 44:19816-19826  doi: 10.1016/j.ijhydene.2019.05.161

    4. [4]

      Zhao Z J, Zhao J, Wang H B, Li X L, Yang L Q, Zhao Z W, Liu X Y, Liu Y Z, Liu P, Cai Z Y. Int. J. Hydrogen Energy, 2020, 45:14199-14207  doi: 10.1016/j.ijhydene.2019.11.007

    5. [5]

      Kim J S, Kim B, Kim H, Kang K. Adv. Energy Mater., 2018, 8:1702774  doi: 10.1002/aenm.201702774

    6. [6]

      Xu H M, Ci S Q, Ding Y C, Wang G X, Wen Z H. J. Mater. Chem. A, 2019, 7:8006-8029  doi: 10.1039/C9TA00833K

    7. [7]

      Roy C, Rao R R, Stoerzinger K A, Hwang J, Rossmeisl J, Chorkendorff I, Shao-Horn Y, Stephens I E L. ACS. Energy Lett., 2018, 3:2045-2051  doi: 10.1021/acsenergylett.8b01178

    8. [8]

      Cherevko S, Zeradjanin A R, Topalov A A, Kulyk N, Katsounaros I, Mayrhofer K J J. ChemCatChem, 2014, 6:2219-2223  doi: 10.1002/cctc.201402194

    9. [9]

      Zhu Y L, Zhou W, Yu J, Chen Y B, Liu M L, Shao Z. Chem. Mater., 2016, 28:1691-1697  doi: 10.1021/acs.chemmater.5b04457

    10. [10]

      Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. Science, 2011, 334:1383-1385  doi: 10.1126/science.1212858

    11. [11]

      Zhu J K, Gao Q M. Microporous Mesoporous Mater., 2009, 124:144-152  doi: 10.1016/j.micromeso.2009.05.003

    12. [12]

      Dresp S, Thanh T N, Klingenhof M, Brückner S, Hauke P, Strasser P. Energy Environ. Sci., 2020, 13:1725-1729  doi: 10.1039/D0EE01125H

    13. [13]

      Zhong H H, Liu T Y, Zhang S W, Li D Q, Tang P G, Alonso-Vante N, Feng Y J. J. Energy Chem., 2019, 33:130-137  doi: 10.1016/j.jechem.2018.09.005

    14. [14]

      Sardar K, Petrucco E, Hiley C I, Sharman J D, Wells P P, Russell A E, Kashtiban R J, Sloan J, Walton R I. Angew. Chem. Int. Ed., 2014, 53:10960-10964  doi: 10.1002/anie.201406668

    15. [15]

      Kötz R, Stucki S. Electrochim. Acta, 1986, 31:1311-1316  doi: 10.1016/0013-4686(86)80153-0

    16. [16]

      Hodnik N, Jovanovič P, Pavlišič A, Jozinović B, Zorko M, Bele M, Šelih V S, Šala M, Hočevar S, Gaberšček M. J. Phys. Chem. C, 2015, 119:10140-10147  doi: 10.1021/acs.jpcc.5b01832

    17. [17]

      Audichon T, Napporn T W, Canaff C, Morais C, Comminges C, Kokoh K B. J. Phys. Chem. C, 2016, 120:2562-2573  doi: 10.1021/acs.jpcc.5b11868

    18. [18]

      Talanov M V, Talanov V M. CrystEngComm, 2020, 22:1176-1187  doi: 10.1039/C9CE01635J

    19. [19]

      Fukina D G, Suleimanov E V, Fukin G K, Boryakov A V, Zubkov S Y, Istomin L A. J. Solid State Chem., 2020, 286:121267  doi: 10.1016/j.jssc.2020.121267

    20. [20]

      Kim J, Shih P C, Tsao K C, Pan Y T, Yin X, Sun C J, Yang H. J. Am. Chem. Soc., 2017, 139:12076-12083  doi: 10.1021/jacs.7b06808

    21. [21]

      Park J, Park M, Nam G, Kim M G, Cho J. Nano Lett., 2017, 17:3974-3981  doi: 10.1021/acs.nanolett.7b01812

    22. [22]

      Kuznetsov D A, Naeem M A, Kumar P V, Abdala P M, Fedorov A, Muller C R. J. Am. Chem. Soc., 2020, 142:7883-7888  doi: 10.1021/jacs.0c01135

    23. [23]

      Cheng F Y, Shen J, Peng B, Pan Y D, Tao Z L, Chen J. Nat. Chem., 2011, 3:79-84  doi: 10.1038/nchem.931

    24. [24]

      Li H, Shang J, Zhu H J, Yang Z P, Ai Z H, Zhang L Z. ACS Catal., 2016, 6:8276-8285  doi: 10.1021/acscatal.6b02613

    25. [25]

      Kim J, Yin X, Tsao K C, Fang S H, Yang H. J. Am. Chem. Soc., 2014, 136:14646-14649  doi: 10.1021/ja506254g

    26. [26]

      Sheetz R M, Ponomareva I, Richter E, Andriotis A N, Menon M. Phys. Rev. B, 2009, 80:195314  doi: 10.1103/PhysRevB.80.195314

    27. [27]

      Zhang S T, Li C M, Yan H, Wei M, Evans D G, Duan X. J. Phys. Chem. C, 2014, 118:3514-3522

    28. [28]

      Lan G Q, Song J, Yang Z. J. Alloys Compd., 2018, 749:909-925  doi: 10.1016/j.jallcom.2018.03.336

    29. [29]

      Banger K K, Yamashita Y, Mori K, Peterson R L, Leedham T, Rickard J, Sirringhaus H. Nat. Mater., 2011, 10:45-50  doi: 10.1038/nmat2914

    30. [30]

      Fan J C C, Goodenough B J. J. Appl. Phys., 1977, 48:3524-3531  doi: 10.1063/1.324149

    31. [31]

      Lu X F, Wu D J, Li R Z, Li Q, Ye S H, Tong Y X, Li G R. J. Mater. Chem. A, 2014, 2:4706-4713  doi: 10.1039/C3TA14930G

    32. [32]

      Chen S, Huang H, Jiang P, Yang K, Diao J F, Gong S P, Liu S, Huang M X, Wang H, Chen Q W. ACS Catal., 2019, 10:1152-1160

    33. [33]

      Patra A S, Gogoi G, Sahu R K, Qureshi M. Phys. Chem. Chem. Phys., 2017, 19:12167-12174  doi: 10.1039/C7CP01444A

    34. [34]

      Berti G, Sanna S, Castellano C, DuiJn J V, Ruiz-Bustos R, Bordonali L, Bussetti G, Calloni A, Demartin F, Duò L, Brambilla A. J. Phys. Chem. C, 2016, 120:11763-11768  doi: 10.1021/acs.jpcc.5b12411

    35. [35]

      Feng Q, Zhao Z L, Yuan X Z, Li H, Wang H J. Appl. Catal. B, 2020, 260:118176  doi: 10.1016/j.apcatb.2019.118176

    36. [36]

      Kim M, Ju H, Kim J. Chem. Eng. J., 2019, 358:11-19  doi: 10.1016/j.cej.2018.09.204

    37. [37]

      Huang Y, Li K, Li S, Lin Y, Liu H, Tong Y. ChemistrySelect, 2018, 3:7423-7428  doi: 10.1002/slct.201800908

    38. [38]

      Park J, Risch M, Nam G, Park M, Shin T J, Park S, Kim M G, Shao-Horn Y, Cho J. Energy Environ. Sci., 2017, 10:129-136  doi: 10.1039/C6EE03046G

    39. [39]

      Kim M, Ju H, Kim J. J. Mater. Chem. A, 2018, 6:8523-8530  doi: 10.1039/C8TA01374H

    40. [40]

      Kim M, Ju H, Kim J. Dalton Trans., 2018, 47:15217-15225  doi: 10.1039/C8DT03217C

    41. [41]

      Yuan X, Wang H, Colinsun J, Zhang J. Int. J. Hydrogen Energy, 2007, 32:4365-4380  doi: 10.1016/j.ijhydene.2007.05.036

    42. [42]

      Ehora G, Daviero-Minaud S, Steil M C, Gengembre L, Mentré O. Chem. Mater., 2008, 20:7425-7433  doi: 10.1021/cm801942c

    43. [43]

      Li X N, Zhang J, Feng Q, Pu C Y, Zhang L Z, Hu M M, Zhou X Y, Zhong X W, Yi W D, Tang J, Li Z W, Zhao X Z, Li H, Xu B M. J. Mater. Chem. A, 2018, 6:17288-17296  doi: 10.1039/C8TA05599H

    44. [44]

      Palma-Goyes R E, Vazquez-Arenas J, Romero-Ibarra I C, Ostos C. ChemistrySelect, 2018, 3:12937-12945  doi: 10.1002/slct.201802695

    45. [45]

      Subramanian M A, Aravamudan G, Rao G V S. Prog. Solid state. Chem., 1983, 15:55-143  doi: 10.1016/0079-6786(83)90001-8

    46. [46]

      Hong W T, Stoerzinger K A, Lee Y L, Giordano L, Grimaud A, Johnson A M, Hwang J, Crumlin E J, Yang W L, Shao-Horn Y. Energy Environ. Sci., 2017, 10:2190-2200  doi: 10.1039/C7EE02052J

  • 加载中
    1. [1]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    4. [4]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    5. [5]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    14. [14]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    15. [15]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(23)
  • Abstract views(1537)
  • HTML views(322)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return