Citation: Hong-Ren RONG, Xian-Mei WANG, Yan-Wei MA, Ge-Xiang GAO, Hao-Qi SU, Li-Fang LAI, Qi LIU. Three-Dimensional Cobalt-Based MOF[KCo7(OH)3(ip)6(H2O)4]·12H2O as High-Capacity Electrode Materials for Supercapacitors[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(2): 206-212. doi: 10.11862/CJIC.2021.042 shu

Three-Dimensional Cobalt-Based MOF[KCo7(OH)3(ip)6(H2O)4]·12H2O as High-Capacity Electrode Materials for Supercapacitors

Figures(7)

  • In order to develop supercapacitors with higher energy density, a three-dimensional cobalt-based metalorganic framework (MOF) compound ([KCo7(OH)3(ip)6(H2O)4]·12H2O, Co ip; ip=isophthalate) was synthesized by simple solvothermal reaction. Its electrochemical performances as a supercapacitor electrode material were investigated. The Co-ip electrode exhibited high specific capacitance, good cycle stability, and superior rate performance. In 1 mol·L-1 KOH solution, the maximum specific capacitance was 1 660 F·g-1 at a current density of 1 A·g-1. At a current density of 2 A·g-1, the retention of specific capacitance was 82.7% after 3 000 cycles. The superior supercapacitive performance is attributed to the three-dimensional porous structure of Co-ip and nano-sized particles.
  • 加载中
    1. [1]

      Zhu Y W, Murali S, Stoller M D, Ganesh K J, Cai W W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, Su D, Stach E A, Ruoff R S. Science, 2011, 332(6037):1537-1541  doi: 10.1126/science.1200770

    2. [2]

      Yang X W, Cheng C, Wang Y F, Qiu L, Li D. Science, 2013, 341(6145):534-537  doi: 10.1126/science.1239089

    3. [3]

      Wang G P, Zhang L, Zhang J J. Chem. Soc. Rev., 2012, 41(2):797-828

    4. [4]

      Zhang L L, Zhao X S. Chem. Soc. Rev., 2009, 38(9):2520-2531  doi: 10.1039/b813846j

    5. [5]

      Liu F, Song S Y, Xue D F, Zhang H J. Adv. Mater., 2012, 24(8):1089-1094  doi: 10.1002/adma.201104691

    6. [6]

      Simon P, Gogotsi Y. Nat. Mater., 2008, 7(11):845-854  doi: 10.1038/nmat2297

    7. [7]

      Gao S W, Sui Y W, Wei F X, Qi J Q, Meng Q K, Ren Y J, He Y Z. J. Colloid Interface Sci., 2018, 531(2018):83-90

    8. [8]

      Beguin F, Presser V, Balducci A, Frackowiak E. Adv. Mater., 2014, 26(14):2219-2251

    9. [9]

      Miller J R, Outlaw R A, Holloway B C. Science, 2010, 329(5999):1637-1639  doi: 10.1126/science.1194372

    10. [10]

      DeBlase C R, Silberstein K E, Truong T T, Abrun H D, Dichtel W R. J. Am. Chem. Soc., 2013, 135(45):16821-16824  doi: 10.1021/ja409421d

    11. [11]

      Ohara K, Kawano M, Inokuma Y, Fujita M. J. Am. Chem. Soc., 2010, 132(1):30-31  doi: 10.1021/ja908794n

    12. [12]

      Ma L Q, Abney C, Lin W B. Chem. Soc. Rev., 2009, 38(5):1248-1256  doi: 10.1039/b807083k

    13. [13]

      Dinca M, Long J R. Angew. Chem. Int. Ed., 2008, 47(36):6766-6779

    14. [14]

      Deng H X, Doonan C J, Furukawa H, Ferreira R B, Towne J, Knobler C B, Wang B, Yaghi O M. Science, 2010, 327(5967):846-850  doi: 10.1126/science.1181761

    15. [15]

      Wang B, Cote A P, Furukawa H, OKeeffe M, Yaghi O M. Nature, 2008, 453(7192):207-211  doi: 10.1038/nature06900

    16. [16]

      Li J R, Sculley J, Zhou H C. Chem. Rev., 2012, 112(2):869-932

    17. [17]

      Wenger O S. Chem. Rev., 2013, 113(5):3686-3733

    18. [18]

      Liu Q, Yu L L, Wang Y, Ji Y Z, Horvat J, Cheng M L, Jia X Y, Wang G X. Inorg. Chem., 2013, 52(6):2817-2822

    19. [19]

      Ferey G, Millange F, Morcrette M, Serre C, Doublet M L, Greneche J M, Tarascon J M. Angew. Chem. Int. Ed., 2007, 46(18):3259-3263

    20. [20]

      Nagarathinam M, Saravanan K, Phua E J H, Reddy M V, Chowdari B V R, Vittal J J. Angew. Chem. Int. Ed., 2012, 51(24):5866-5870

    21. [21]

      Song Y D, Yu L L, Gao Y R, Shi C D, Cheng M L, Wang X M, Liu H J, Liu Q. Inorg. Chem., 2017, 56(17):11603-11609

    22. [22]

      Sun G C, Yu L L, Hu Y, Sha Y Y, Rong H R, Li B L, Liu H J, Liu Q. Cryst. Growth Des., 2019, 19(11):6503-6510

    23. [23]

      Su J, Hu T H, Murase R, Wang H Y, D'Alessandro D M, Kurmoo M, Zuo J L. Inorg Chem., 2019, 58(6):3698-3706

    24. [24]

      Wang H Y, Su J, Ma J P, Yu F, Leong C F, D'Alessandro D M, Kurmoo M, Zuo J L. Inorg. Chem., 2019, 58(13):8657-8664

    25. [25]

      Morozan A, Jaouen F. Energy Environ. Sci., 2012, 5(11):9269-9290

    26. [26]

      Pang H, Gao F, Chen Q, Liu R M, Lu Q Y. Dalton Trans., 2012, 41(19):5862-5868

    27. [27]

      Liu B, Shioyama H, Akita T, Xu Q. J. Am. Chem. Soc., 2008, 130(16):5390-5391

    28. [28]

      Diaz R, Orcajo M G, Botas J A, Calleja G, Palma J. Mater. Lett., 2012, 68:126-128

    29. [29]

      Lee D Y, Yoon S J, Shrestha N K, Lee S H, Ahn H, Han S H. Micro-porous Mesoporous Mater., 2012, 153(1):163-165

    30. [30]

      Lee D Y, Shinde D V, Kim E K, Lee W, Oh I W, Shrestha N K, Lee J K, Han S H. Microporous Mesoporous Mater., 2013, 171(1):53-57

    31. [31]

      Gong Y, Li J, Jiang P G, Li Q F, Lin J H. Dalton Trans., 2013, 42(5):1603-1611

    32. [32]

      Choi K M, Jeong H M, Park J H, Zhang Y B, Kang J K, Yaghi O M. ACS Nano, 2014, 8(7):7451-7457

    33. [33]

      Yang J, Xiong P X, Zheng C, Qiu H Y, Wei M D. J. Mater. Chem. A, 2014, 2(39):16640-16644

    34. [34]

      Yang J, Zheng C, Xiong P X, Li Y F, Wei M D. J. Mater. Chem. A, 2014, 2(44):19005-19010

    35. [35]

      Liu Q, Liu X X, Shi C D, Zhang Y P, Feng X J, Cheng M L, Su S, Gu J D. Dalton Trans., 2015, 44(44):19175-19184

    36. [36]

      Liu X X, Shi C D, Zhai C W, Cheng M L, Liu Q, Wang G X. ACS Appl. Mater. Interfaces, 2016, 8(7):4585-4591

    37. [37]

      Sheberla D, Bachman J C, Elias J S, Sun C J, Shao-Horn Y, Dinca M. Nat. Mater., 2017, 16(2):220-224

    38. [38]

      Yu L L, Wang X M, Cheng M L, Rong H R, Song Y D, Liu Q. Cryst. Growth Des., 2018, 18(1):280-285

    39. [39]

      Wang X M, Liu X X, Rong H R, Song Y D, Wen H, Liu Q. RSC Adv., 2017, 7(47):29611-29617

    40. [40]

      Wang L, Feng X, Ren L T, Piao Q H, Zhong J Q, Wang Y B, Li H W, Chen Y F, Wang B. J. Am. Chem. Soc., 2015, 137(15):4920-4923

    41. [41]

      Kazemi S H, Hosseinzadeh B, Kazemi H, Kiani M A, Hajati S. ACS Appl. Mater. Interfaces, 2018, 10(27):23063-23073

    42. [42]

      Zheng S S, Xue H G, Pang H. Coord. Chem. Rev., 2018, 373:2-21

    43. [43]

      Kang L, Sun S X, Kong L B, Lang J W, Luo Y C. Chin. Chem. Lett., 2014, 25(6):957-961

    44. [44]

      Cheng X N, Zhang W X, Lin Y Y, Zheng Y Z, Chen X M. Adv. Mater., 2007, 19(11):1494-1498

    45. [45]

      LIU S H, WANG D H, PAN C H. Analysis of X-ray Photoelectron Spectroscopy. Beijing:Science Press, 1998.

    46. [46]

      Zhong J H, Wang A L, Li G R, Wang J W, Ou Y N, Tong Y X. J. Mater. Chem., 2012, 22(12):5656-5665

  • 加载中
    1. [1]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    5. [5]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    18. [18]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    19. [19]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(3)
  • Abstract views(1649)
  • HTML views(410)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return