Citation: Akhtar Ali, Peng DAI, Xiang-Feng CHU, Shi-Ming LIANG, Li-Fang HE. Trimethylamine Vapour Sensing Properties of MoO3-GQDs Prepared by Hydrothermal Method[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(2): 351-360. doi: 10.11862/CJIC.2021.039 shu

Trimethylamine Vapour Sensing Properties of MoO3-GQDs Prepared by Hydrothermal Method

Figures(11)

  • A series of MoO3-GQDs nano-composites with different amounts of graphene quantum dots (GQDs) were prepared by the hydrothermal method. The as-prepared samples were characterized by X-ray diffraction, Scanning electron microscope, Transmission electron microscope, FTIR and so on. The gas sensing properties of MoO3-GQDs were investigated. It was found that the amount of GQDs in the composites had a great influence on the gas response and gas sensing selectivity of the nano-composites. The sensor based on the MoO3-GQDs nano-composite (S-6, the amount of GQDs suspension was 6.0 mL) showed high response and good gas sensing selectivity to TMA at 230℃; the response of the sensor to 1 000 μL·L-1 TMA was 74.08; the response time and recovery time to 1 000 μL·L-1 TMA were 73 and 34 s, respectively; the sensor based on MoO3-GQDs (S-6) composite could detect 1 μL·L-1 TMA vapor at 230℃.
  • 加载中
    1. [1]

      Tong M S, Dai G R, Gao D S. Mater. Chem. Phys., 2001, 69:176-179  doi: 10.1016/S0254-0584(00)00389-8

    2. [2]

      Barbri N E, Amari A, Vinaixa M, Bouchikhi B, Correig X, Llobet E. Sens. Actuators B Chem., 2007, 128:235-244  doi: 10.1016/j.snb.2007.06.007

    3. [3]

      Zhang W H, Zhang W D. Sens. Actuators B Chem., 2008, 134:403-408  doi: 10.1016/j.snb.2008.05.015

    4. [4]

      Wei P H, Li G B, Zhao S Y, Chen L R. J. Electrochem. Soc., 1999, 146(9):3536-3537  doi: 10.1149/1.1392510

    5. [5]

      Mitsubayashi K J, Kubotera Y, Yano K H, Hashimoto Y, Kon T, Nakakura S, Nishi Y T, Endo H K. Sens. Actuators B Chem., 2004, 103:463-467  doi: 10.1016/j.snb.2004.05.006

    6. [6]

      Xue Z G, Cheng Z X, Xu J, Xiang Q, Wang X H, Xu J Q. ACS Appl. Mater. Interfaces, 2017, 9:41559-41567  doi: 10.1021/acsami.7b13370

    7. [7]

      Xu J Q, Xue Z G, Qin N, Cheng Z X, Xiang Q. Sens. Actuators B Chem., 2017, 242:148-157  doi: 10.1016/j.snb.2016.09.193

    8. [8]

      Onkar S G, Raghuwansi F C, Patil D R, Krishnakumar T. Mater. Today:Proc., 2020, 23:190-201  doi: 10.1016/j.matpr.2020.02.017

    9. [9]

      Zhang S Y, Yin C B, Yang L, Zhang Z L, Han Z J. Sens. Actuator B Chem., 2019, 283:399-406  doi: 10.1016/j.snb.2018.12.051

    10. [10]

      Deng L L, Zhao C X, Ma Y Q, Chen S S, Xu G. Anal. Methods, 2013, 5:3709-3713  doi: 10.1039/c3ay40373d

    11. [11]

      Fu X X, Yang P Y, Xiao X F, Zhou D, Huang R, Zhang X H, Cao F, Xiong J, Hu Y M, Tu Y F, Zou Y, Wang Z. J. Alloys Compd., 2019, 797:666-675  doi: 10.1016/j.jallcom.2019.05.145

    12. [12]

      Chen E X, Fu H R, Lin R, Tan Y X, Zhang J. ACS Appl. Mater. Interfaces, 2014, 6:22871-22875  doi: 10.1021/am5071317

    13. [13]

      Meduri P, Clark E, Kim J H, Dayalan E J, Sumanasekera G U, Sunkara M K. Nano Lett., 2012, 12:1784-1788  doi: 10.1021/nl203649p

    14. [14]

      Gan L, Xu L J, Shang S M, Zhou X Y, Meng L. Ceram. Int., 2016, 42:15235-15241  doi: 10.1016/j.ceramint.2016.06.160

    15. [15]

      Yang S, Lei G, Lan Z G. Xie W, Yang B P. Xu H X, Wang Z, Gu H S. Int. J. Hydrogen Energy, 2019, 44:7725-7733  doi: 10.1016/j.ijhydene.2019.01.205

    16. [16]

      Imawan C, Steffes H, Solzbacher F, Obermeier E. Sens. Actuators B Chem., 2001, 78(1/2/3):119-125

    17. [17]

      Hussain O M, Rao K S. Sens. Actuators B Chem., 2003, 80(3):638-646

    18. [18]

      Bacon M, Bradley S J, Nann T D. Part. Part. Syst. Charact., 2014, 31(4):415-428  doi: 10.1002/ppsc.201300252

    19. [19]

      Pan D Y, Zhang J C, Li Z, Wu M H. Adv. Mater., 2010, 22:734-738  doi: 10.1002/adma.200902825

    20. [20]

      Peng J, Gao W, Gupta B K, Liu Z, Aburto R R, Ge L H, Song L, Alemany L B, Zhan X B, Gao G H, Vithayathil S A, Kaipparettu B A, Marti A A, Hayashi T, Zhu J J, Ajayan P M. Nano Lett., 2012, 12(2):844-849  doi: 10.1021/nl2038979

    21. [21]

      Yoon H J, Jun D H, Yang J H, Zhou Z X, Yang S S, Cheng M M C. Sens. Actuators B Chem., 2011, 157:310-313  doi: 10.1016/j.snb.2011.03.035

    22. [22]

      Gautam M, Jayatissa A H. Mater. Sci. Eng. C, 2011, 31:1405-1411  doi: 10.1016/j.msec.2011.05.008

    23. [23]

      Zhang L S, Wang W D, Liang X Q, Chu W S, Song W G, Wang W, Wu Z Y. Nanoscale, 2011, 3:2458-2460  doi: 10.1039/c1nr10187k

    24. [24]

      Dan Y P, Lu Y, Kybert N J, Luo Z T, Johnson A T C. Nano Lett., 2009, 4:1472-1475

    25. [25]

      Chu X F, Dai P, Liang S M, Bhattacharya A, Dong Y P, Epifani M. Physica E, 2019, 106:326-333

    26. [26]

      Hu T, Chu X F, Gao F, Dong Y P, Sun W Q, Bai L S. J. Solid State Chem., 2016, 237:284-291

    27. [27]

      Yang S, Liu Y L, Chen W, Jin W, Zhou J, Zhang H, Zhakarova G S. Sens. Actuators B Chem., 2016, 226:478-485  doi: 10.1016/j.snb.2015.12.005

    28. [28]

      Shaheen W, Warsi M F, Shahid M, Khan M Z, Asghar M, Ali Z, Sarfraz M, Anwar H, Nadeem M, Shakir I. Electrochim. Acta, 2016, 219:330-338  doi: 10.1016/j.electacta.2016.09.069

    29. [29]

      Liu Y L, Yang S, Lu Y, Podval' naya N V, Chen W. Appl. Surf. Sci., 2015, 359:114-119

    30. [30]

      Bai S L, Chen C, Luo R X, Chen A, Li D Q. Sens. Actuators B Chem., 2015, 216:113-120
       

    31. [31]

      Yang X F, Lu C Y, Qin J L, Zhang R X, Tang H, Song H J. Mater. Lett., 2011, 65:2341-2344

    32. [32]

      Sui L L, Xu Y M, Zhang X F, Cheng X L, Gao S, Zhao H, Cai Z, Huo L H. Sens. Actuators B Chem., 2015, 208:406-414
       

    33. [33]

      Mao Y C, Li W, Sun X F, Ma Y J, Xia J, Zhao Y F, Lu X H, Gan J Y, Liu Z Q, Chen J, Liu P, Tong Y X. CrystEngComm, 2012, 14(4):1419-1424

    34. [34]

      Liu D, Lei W W, Hao J, Liu D D, Liu B B, Wang X, Chen X H, Cui Q L, Zou G T, Liu J, Jiang S. J. Appl. Phys., 2009, 105:23513-23518

    35. [35]

      Boukhachem A, Bouzidi R, Boughalmi R, Ouerteni R, Kahlaoui M, Ouni B, Elhouichet H, Amlouk M. Ceram. Int., 2014, 40(8):13427-13435

    36. [36]

      Wei G D, Qin W P, Zhang D S, Wang G F, Kim R J, Zheng K Z, Wang L L. J. Alloys Compd., 2009, 481:417-421

    37. [37]

      Martínez H M, Torres J, Carreno L D L, Rodriguez-Garcia M E. Mater. Charact., 2013, 75:184-193
       

    38. [38]

      Noerochim L, Wang J Z, Wexler D, Chao Z, Liu H K. J. Power Sources, 2013, 228:198-205

    39. [39]

      Fang L, Shu Y Y, Wang A Q, Zhang T. J. Phys. Chem. C, 2007, 111:2401-2408

    40. [40]

      Hao X Q, Jin Z L, Xu J, Min S X, Lu G X. Superlattices Microstruct., 2016, 94:237-244

    41. [41]

      Wang L, Tricard S, Yue P W, Zhao J H, Fang J, Shen W G. Biosens. Bioelectron., 2016, 77:1112-1118
       

    42. [42]

      Bai S L, Zhao Y H, Sun J H, Tong Z F, Luo R X, Li D Q, Chen A F. Sens. Actuators B Chem., 2017, 239:131-138

    43. [43]

      Guo R T, Lu C Z, Pan W G, Zhen W L, Wang Q S, Chen Q L, Ding H L, Yang N Z. Catal. Commun., 2015, 59:136-139
       

    44. [44]

      Song Y H, Zhao Y, Huang Z F, Zhao J Z. J. Alloys Compd., 2017, 693:1290-1296

    45. [45]

      Chen Y P, Lu C L, Xu L, Ma Y, Hou W H, Zhu J J. CrystEngComm., 2010, 12(11):3740-3747

    46. [46]

      Lian Z H, Liu F D, He H, Shi X Y, Mo J S, Wu Z B. Chem. Eng. J., 2014, 250:390-398

    47. [47]

      Park S G, Sun G J, Kheel H J, Lee Y R, Row K H, Lee C M. Curr. Appl. Phys., 2015, 15:1534-1538

    48. [48]

      Li M, Zhao R J, Su Y J, Yang Z, Zhang Y F. Nanoscale, 2016, 8:8559-8567
       

    49. [49]

      Kwak C H, Woo H S, Lee J H. Sens. Actuators B Chem., 2014, 204:231-238

    50. [50]

      Lou Z, Li F, Deng J N, Wang L L, Zhang T. ACS Appl. Mater. Inter- faces, 2013, 5:12310-12316

    51. [51]

      Lee C S, Kim I D, Lee J H. Sens. Actuators B Chem., 2013, 181:463-470
       

    52. [52]

      Lu X F, Yu Q Q, Wang K, Shi L C, Liu X, Qiu A G, Wang L. Cryst. Res. Technol., 2010, 45:557-561

    53. [53]

      Yang S, Liu Y L, Chen W, Jin W, Zhou J, Zhang H, Zakharova G S. Sens. Actuators B Chem., 2016, 226:478-485

    54. [54]

      Cho Y H, Liang X S, Kang Y C, Lee J H. Sens. Actuators B Chem., 2015, 207:330-337

    55. [55]

      Kim K M, Choi K I, Jeong H M, Kim H J, Kim H R, Lee J H. Sens. Actuators B Chem., 2012, 166-167:733-738

  • 加载中
    1. [1]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    2. [2]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    3. [3]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    4. [4]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    5. [5]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    6. [6]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    7. [7]

      Fengkai ZouBorui SuHan LengNini XinShichao JiangDan WeiMei YangYouhua WangHongsong Fan . Red-emissive carbon quantum dots minimize phototoxicity for rapid and long-term lipid droplet monitoring. Chinese Chemical Letters, 2024, 35(10): 109523-. doi: 10.1016/j.cclet.2024.109523

    8. [8]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    9. [9]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    10. [10]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    11. [11]

      Rui ChengTingting ZhangXin HuangJian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763

    12. [12]

      Bohan ZhangBingzhe WangGuichuan XingZikang TangSongnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358

    13. [13]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    14. [14]

      Junjie WangYan WangZhengdong LiChangqiang XieMusammir KhanXingzhou PengFabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934

    15. [15]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    16. [16]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    17. [17]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    18. [18]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    19. [19]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    20. [20]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

Metrics
  • PDF Downloads(5)
  • Abstract views(900)
  • HTML views(206)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return