Citation: Zi-Yu ZHANG, Liu-Lei QIN, Yang LIU, Hui LI, Hong-Zhi HU, Zun-Qi LIU. Synthesis, Reversible Phase Transition and Dielectric Properties of Molybdenum-Based Pyridines Organic-Inorganic Hybrid Crystalline Materials[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(2): 305-315. doi: 10.11862/CJIC.2021.034 shu

Synthesis, Reversible Phase Transition and Dielectric Properties of Molybdenum-Based Pyridines Organic-Inorganic Hybrid Crystalline Materials

Figures(13)

  • The organic - inorganic hybrid crystalline material (C7H11N2)4[MoOBr4(H2O)]2Br2 (1) was synthesized by solvent evaporation method in the mixed solution of methanol, ethanol, water and hydrobromic acid using 4-dimethylaminopyridine and ammonium molybdate as raw materials. The crystal structure, thermal and electrical properties were characterized by infrared spectroscopy, single crystal X-ray diffraction, powder X-ray diffraction, thermogravimetric analysis and dielectric measurements and differential thermal analysis. Single crystal X-ray diffraction displayed one dimensional chain and multi dimensional hydrogen bonding network structure through anions and cations forming π-π stacking in space. When the temperature changed, the structural cavity deformation with molybdenum complex ion[MoOBr4(H2O)]- as the vertex caused the hydrogen-bonding dihedral angles of tetramer[MoOBr4(H2O)]2Br2 to occur obvious folding oscillation, which results in the distinct thermal energy with structural phase transition and reversible dielectric anomaly observed at around 238 K. CCDC: 2024338, 1-LT; 2024339, 1-RT.
  • 加载中
    1. [1]

      Zhang J, Liu X T, Li X F, Han S G, Tao K W, Wang Y Y, Ji C M, Sun Z H, Luo J H. Chem.-Asian J., 2018, 13(8):982-988  doi: 10.1002/asia.201701588

    2. [2]

      Hajlaoui F, Audebrand N, Roisnel T, Zouari N. Appl. Organomet. Chem., 2020, 34(2):5293-5304

    3. [3]

      Li H J, Liu Y L, Chen X G, Gao J X, Wang Z X, Liao W Q. Inorg. Chem., 2019, 58(15):10357-10363  doi: 10.1021/acs.inorgchem.9b01538

    4. [4]

      Zhu X, Zhang W Y, Chen C, Ye Q, Fu D W. Dalton Trans., 2018, 47(7):2344-2351  doi: 10.1039/C7DT04489E

    5. [5]

      Zhang Z L, Li Z, Chang S Q, Gao W X, Yuan G L, Xiong R G, Ren S Q. Mater. Today, 2020, 34:51-57  doi: 10.1016/j.mattod.2019.09.004

    6. [6]

      WU H, ZHAO X L, ZHONG R B, DAI G G, WU W N, WANG Y. Chinese J. Inorg. Chem., 2018, 34(10):1917-1922  doi: 10.11862/CJIC.2018.215
       

    7. [7]

      Wu Y X, Wang C F, Li H H, Jiang F, Shi C, Ye H Y, Zhang Y. Eur. J. Inorg. Chem., 2020, 4:394-399

    8. [8]

      Liu J C, Liao W Q, Li P F, Tang Y Y, Chen X G, Song X J, Zhang H Y, Zhang Y, You Y M, Xiong R G. Angew. Chem. Int. Ed., 2020, 59(9):3495-3499  doi: 10.1002/anie.201914193

    9. [9]

      Shi C, Ma J J, Jiang J Y, Hua M M, Xu Q, Yu H, Zhang Y, Ye H Y. J. Am. Chem. Soc., 2020, 142(21):9634-9641

    10. [10]

      Sui Y, Liu D S, Chen W T, Wang L J, Ma Y X, Lai H Q, Zhou Y W, Wen H R. Chem.-Asian J., 2020, 15(10):1621-1626  doi: 10.1002/asia.202000241

    11. [11]

      Shi P P, Tang Y Y, Li P F, Liao W Q, Wang Z X, Ye Q, Xiong R G. Chem. Soc. Rev., 2016, 45(14):3811-3827  doi: 10.1039/C5CS00308C

    12. [12]

      Sui Y, Zhong Y S, Wang J J, Xiao Q, Wang L J, Liu D S. J. Mater. Chem. C, 2019, 7(45):14294-14300

    13. [13]

      Zhang Z X, Zhang T, Shi P P, Zhang W Y, Ye Q, Fu D W. Inorg. Chem. Front., 2020, 7(5):1239-1249

    14. [14]

      Chen X G, Song X J, Zhang Z X, Li P F, Ge J Z, Tang Y Y, Gao J X, Zhang W Y, Fu D W, You Y M, Xiong R G. J. Am. Chem. Soc., 2020, 142(2):1077-1082  doi: 10.1021/jacs.9b12368

    15. [15]

      Zhang H Y, Song X J, Cheng H, Zeng Y L, Zhang Y, Li P F, Liao W Q, Xiong R G. J. Am. Chem. Soc., 2020, 142(10):4604-4608  doi: 10.1021/jacs.0c00375

    16. [16]

      Gong L K, Hu Q Q, Huang F Q, Zhang Z Z, Shen N N, Hu B, Song Y, Wang Z P, Du K Z, Huang X Y. Chem. Commun., 2019, 55(51):7303-7306

    17. [17]

      Guo Q, Zhang W Y, Chen C, Ye Q, Fu D W. J. Mater. Chem. C, 2017, 5(22):5458-5464

    18. [18]

      Wang Z X, Zhang Y, Tang Y Y, Li P F, Xiong R G. J. Am. Chem. Soc., 2019, 141(10):4372-4378  doi: 10.1021/jacs.8b13109

    19. [19]

      Li X N, Li P F, Liao W Q, Liao W Q, Ge J Z, Wu D W, Ye H Y. Eur. J. Inorg. Chem., 2017, 5:938-942

    20. [20]

      Xiong R G, Lu S Q, Zhang Z X, Cheng H, Li P F, Liao W Q. Angew. Chem. Int. Ed., 2020, 59(24):9574-9578

    21. [21]

      Sui Y, Zhang G X, Wang W Q, Hu F, Liu C L, Luo D, Liu D S. ChemistrySelect, 2019, 4(13):3921-3925

    22. [22]

      Ben M O, Chebbi H, Zid M F. J. Mol. Struct., 2019, 1180:72-80

    23. [23]

      ZHENG X Y, LIU Y, LIU Y, QIN L L, WANG L, LIU Z Q. Chinese J. Inorg. Chem., 2020, 36(3):406-414
       

    24. [24]

      Abuskhuna S, Mccann M, Briody J, Devereux M, Vickie M. Polyhedron, 2004, 23(10):1731-1737

    25. [25]

      Wang S Y, Zhou Z H. RSC Adv., 2019, 9(1):519-528

    26. [26]

      Hassen S, Chebbi H, Zid M F, Arfaoui Y. J. Iran. Chem. Soc., 2018, 15(12):2659-2668

    27. [27]

      ZHENG X Y, LIU Y, QIN L L, YU F F, ZHU C L, LIU Z Q. Chinese J. Inorg. Chem., 2019, 35(2):277-284
       

    28. [28]

      CAI X W, QIANG W, ZHAO Y Y, LI H, HUANG C P, GUO Y C. Chinese J. Inorg. Chem., 2018, 34(2):283-288
       

    29. [29]

      LI X M, PAN Y R, LIU B, ZHOU S, CHANG Y F. Chinese J. Inorg. Chem., 2018, 34(10):1923-1928
       

    30. [30]

      ZHAI L J, NIU L Y, HAO X Y, CHEN L J, LI G F, FAN L M. Chinese J. Inorg. Chem., 2018, 34(10):1936-1942
       

    31. [31]

      Hang T, Zhang W, Ye H Y, Xiong R G. Chem. Soc. Rev., 2011, 40(7):3577-3598

    32. [32]

      Wang X L, Zhou L, Ye Q, Geng F J, Ye H Y, Fu D W, Zhang Y. RSC Adv., 2016, 6(78):74117-74123

    33. [33]

      LI X M, YANG J Q, PAN Y R, LIU B, ZHOU S. Chinese J. Inorg. Chem., 2020, 36(4):730-736
       

    34. [34]

      Hadhri M, Chebbi H, Haddad A, Ayed B. J. Coord. Chem., 2018, 71(7):1035-1047

    35. [35]

      Ye L, Gong Z X, Shi C, Ma J J, Liang H, Qi F W, Dian Yu E, Wang C F, Zhang Y, Ye H Y. CrystEngComm, 2019, 21(46):7043-7047

    36. [36]

      Li G P, Lu S Q, Chen X, Liao W Q, Tang Y Y, Xiong R G. Chem.- Eur. J., 2019, 25(72):16625-16629

    37. [37]

      Li P F, Tang Y Y, Liao W Q, Shi P P, Hua X N, Zhang Y, Wei Z H, Cai H, Xiong R G. Angew. Chem. Int. Ed., 2018, 53(37):11939-11942

    38. [38]

      Magott M, Dunbar K R, Pinkowicz D. Dalton Trans., 2019, 48(41):15493-15500

    39. [39]

      Kempe D K, Dolinar B S, Vignesh K R, Woods T J, Saber M R, Dunbar K R. Chem. Commun., 2019, 55(14):2098-2101

    40. [40]

      Chen X G, Song X J, Zhang Z X, Li P F, Ge J Z, Tang Y Y, Gao J X, Zhang W Y, Fu D W, You Y M, Xiong R G. J. Am. Chem. Soc., 2020, 142(2):1077-1082

    41. [41]

      Sheldrick G M. SHELXS-97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.

  • 加载中
    1. [1]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    2. [2]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    3. [3]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    15. [15]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    16. [16]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    17. [17]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    18. [18]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    19. [19]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(6)
  • Abstract views(1080)
  • HTML views(171)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return