Citation: Li ZHANG, Chang JIANG, Lin-Feng GUO, Xiao-Ling ZHANG, Xiong-Qiang LIN, Jie KANG, Wei-Ming SUN. Synthesis, Characterization, Antitumor Activity, and Theoretical Calculations of Co(Ⅱ) Complex Based on Pyridine-2, 6-dicarboxylic Acid[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(2): 368-374. doi: 10.11862/CJIC.2021.027 shu

Synthesis, Characterization, Antitumor Activity, and Theoretical Calculations of Co(Ⅱ) Complex Based on Pyridine-2, 6-dicarboxylic Acid

Figures(4)

  • A new cobalt complex, namely[Co(Hpdc)(bpy)Cl]·C2H5OH (bpy=2, 2'-bipyridine), was synthesized by using pyridine-2, 6-dicarboxylic acid (H2pdc) as ligand under hydrothermal condition, and followed by experimental characterization of infrared spectroscopy and X-ray single-crystal diffraction. To deeply reveal the electronic structure of this complex, density functional theory calculations were employed to investigate its charge distribution, electrostatic potential, frontier molecular orbitals, and relevant electronic properties under aqueous condition. Moreover, the antitumor activity of this complex was evaluated by thiazolyl blue tetrazolium bromide (MTT) assay in chronic myelocytic leukemia (K562) and esophageal carcinoma (OE-19) cancer cell lines, and the resulting IC50 values were estimated to be as low as (0.22±0.05) μg·mL-1 and (0.82±0.16) μg·mL-1 (i. e., (0.48±0.11) μmol·L-1 and (1.77±0.35) μmol·L-1) for K562 and OE-19, respectively, demonstrating its cytotoxic activity against these two cancer cell lines. CCDC: 1994088.
  • 加载中
    1. [1]

      Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin D M, Forman D, Bray F. Int. J. Cancer, 2015, 136(5):E359-E386  doi: 10.1002/ijc.29210

    2. [2]

      Thun M J, DeLancey J O, Center M M, Jemal A, Ward E M. Carcinogenesis, 2009, 31(1):100-110

    3. [3]

      Tomasetti C, Li L, Vogelstein B. Science, 2017, 355(6331):1330-1334  doi: 10.1126/science.aaf9011

    4. [4]

      Livingston D M, Silver D P. Nature, 2008, 451(7182):1066-1067  doi: 10.1038/4511066a

    5. [5]

      Rosenberg B, Vancamp L, Krigas T. Nature, 1965, 205(4972):698-699  doi: 10.1038/205698a0

    6. [6]

      Rosenberg B, Vancamp L, Trosko J E, Mansour V H. Nature, 1969, 222(5191):385-386  doi: 10.1038/222385a0

    7. [7]

      Hurley, Laurence H. Nat. Rev. Cancer, 2002, 2(3):188-200  doi: 10.1038/nrc749

    8. [8]

      Hartinger C G, Dyson P J. Chem. Soc. Rev., 2009, 38(2):391-401  doi: 10.1039/B707077M

    9. [9]

      Thota S, Rodrigues D A, Crans D C, Barreiro E J. J. Med. Chem., 2018, 61(14):5805-5821  doi: 10.1021/acs.jmedchem.7b01689

    10. [10]

      Bakalova A, Varbanov H, Buyukliev R, Momekov G, Ferdinandov D, Konstantinov S, Ivanov D. Eur. J. Med. Chem., 2008, 43(5):958-965  doi: 10.1016/j.ejmech.2007.06.025

    11. [11]

      Galanski M, Arion V B, Jakupec M A, Keppler B K. Curr. Pharm. Des., 2003, 9(25):2078-2089  doi: 10.2174/1381612033454180

    12. [12]

      Tanaka T, Yukawa K, Umesaki N. Oncol. Rep., 2005, 14(5):1365-1369

    13. [13]

      Rabik C A, Dolan M E. Cancer Treat. Rev., 2007, 33(1):9-23  doi: 10.1016/j.ctrv.2006.09.006

    14. [14]

      Ohmichi M, Hayakawa J, Tasaka K, Kurachi H, Murata Y. Trends Pharmacol. Sci., 2005, 26(3):113-116  doi: 10.1016/j.tips.2005.01.002

    15. [15]

      Galanski M. Recent Patents Anti-Canc. Drug Discov., 2006, 1(2):285-295  doi: 10.2174/157489206777442287

    16. [16]

      Shaili E. Sci. Prog., 2014, 97(1):20-40  doi: 10.3184/003685014X13904811808460

    17. [17]

      CHEN Z F, MA Y D, HUA L G, ZHANG J. Chinese J. Inorg. Chem., 2014, 30(7):1525-1534
       

    18. [18]

      Pires B M, Giacomin L C, Castro F A V, Amanda D S C, Pereira M D, Bortoluzzi A J, Faria R B, Scarpellini M. J. Inorg. Biochem., 2016, 157:104-113  doi: 10.1016/j.jinorgbio.2016.01.024

    19. [19]

      XIE Q F, GUO M L, CHEN Y M. Chinese J. Inorg. Chem., 2018, 34(2):309-316
       

    20. [20]

      Li J, Zhang J, Zhang Q, Wang Y, Bai Z, Zhao Q, He D, Wang Z, Zhang J, Chen Y. Bioorg. Med. Chem., 2019, 27(20):115071  doi: 10.1016/j.bmc.2019.115071

    21. [21]

      Khan H Y, Ansari M O, Shadab G G H A, Tabassum S, Arjmand F. Bioorg. Chem., 2019, 88(2019):102963

    22. [22]

      Chuasaard T, Panyarat K, Rodlamul P, Chainok K, Yimklan S, Rujiwatra A. Cryst. Growth Des., 2017, 17(3):1045-1054  doi: 10.1021/acs.cgd.6b01389

    23. [23]

      Xu J, Su W, Hong M. Cryst. Growth Des., 2011, 11(1):337-346  doi: 10.1021/cg101343k

    24. [24]

      Ghosh S K, Ribas J, Bharadwaj P K. CrystEngComm, 2004, 6(45):250-256  doi: 10.1039/B407571D

    25. [25]

      Bordbar M, Tabatabaee M, Alizadeh-Nouqi M, Mehri-Lighvan Z, Khavasi H R, YeganehFaal A, Fallahian F, Dolati M. J. Iran. Chem. Soc., 2016, 13(6):1125-1132  doi: 10.1007/s13738-016-0826-x

    26. [26]

      Ghosh S K, Bharadwaj P K. Inorg. Chem., 2004, 43(7):2293-2298  doi: 10.1021/ic034982v

    27. [27]

      Ghosh S K, Bharadwaj P K. Inorg. Chem., 2005, 44(9):3156-3161  doi: 10.1021/ic048159q

    28. [28]

      Derikvand Z, Dorosti N, Hassanzadeh F, Shokrollahi A, Mohammadpour Z, Azadbakht A. Polyhedron, 2012, 43(1):140-152  doi: 10.1016/j.poly.2012.06.026

    29. [29]

      Deng D, Liu P, Fu W, Li L, Yang F, Ji B. Inorg. Chim. Acta, 2010, 363(5):891-898  doi: 10.1016/j.ica.2009.12.044

    30. [30]

      CrystalClear 1.40, Rigaku Americas Corp, The Woodlands, TX, 2008.

    31. [31]

      Sheldrick G M. SHELXL-97, Program for the Solution of Crystal Structures, University of Göttingen, Germany, 1997.

    32. [32]

      Sheldrick G M. SHELXL-2018/1, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 2018.

    33. [33]

      Hutama A S, Huang H, Kurniawan Y S. Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2019, 221:117152

    34. [34]

      Parr R G, Donnelly R A, Levy M, Palke W E. J. Chem. Phys., 1978, 68(8):3801-3807  doi: 10.1063/1.436185

    35. [35]

      Parr R G, Szentpaly L V, Liu S. J. Am. Chem. Soc., 1999, 121(9):1922-1924

    36. [36]

      Cohen A J, Mori-Sánchez P, Yang W. Science, 2008, 321(5890):792-794
       

    37. [37]

      Mori-Sanchez P, Cohen A J, Yang W. J. Chem. Phys., 2006, 125(20):2604-308

    38. [38]

      Lu C, Kuang X Y, Lu Z W, Mao A J, Ma Y M. J. Phys. Chem. A, 2011, 115(33):9273-9281
       

    39. [39]

      Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Rega N, Gao J, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JrJA, Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J. Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford, 2016.

    40. [40]

      Scalmani G, Frisch M J. J. Chem. Phys., 2010, 132(11):114110

    41. [41]

      Dennington R, Keith T, Millam J. GaussView, Ver. 6, KS, USA: Semichem Inc, Shawnee Mission, 2016.

    42. [42]

      Lu T, Chen F J. Comput. Chem., 2012, 33(5):580-592

    43. [43]

      Humphrey W, Dalke A, Schulten K. J. Mol. Graphics, 1996, 14(1):33-38

    44. [44]

      Stamatatos T C, Pringouri K V, Raptopoulou C P, Vicente R, Psycharis V, Escuer A, Perlepes S P. Inorg. Chem. Commun., 2006, 9(12):1178-1182

    45. [45]

      Marques L F, Marinho M V, Speziali N L, Visentin L D C, Machado F C. Inorg. Chim. Acta, 2011, 365(1):454-457
       

    46. [46]

      Ghasemi K, Rezvani A R, Shokrollahi A, Moghimi A, Gavahi S, García-Granda S, Mendoza-Meroño R. C. R. Chim., 2014, 17(12):1221-1229

    47. [47]

      Gao H. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2011, 79(3):687-693

    48. [48]

      Štarha P, Marek J, Trávníček Z. Polyhedron, 2012, 33(1):404-409

    49. [49]

      Krstic N M, Matic I Z, Juranic Z D, Novakovic I T, Sladic D M. J. Steroid. Biochem. Mol. Biol., 2014, 143:365-375

    50. [50]

      Ohe Y, Nakagawa K, Fujiwara Y, Sasaki Y, Minato K, Bungo M. Cancer Res., 1989, 49(15):4098-4102

    51. [51]

      Han Q B, Li R T, Zhang J X, Sun H D. Helv. Chim. Acta, 2004, 87(5):1119-1124
       

    52. [52]

      Su W C, Chang S L, Chen T Y, Chen J S, Tsao C J. Jpn. J. Clin. Oncol., 2000, 30(12):562-567

  • 加载中
    1. [1]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    2. [2]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    3. [3]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    4. [4]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    5. [5]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    6. [6]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    7. [7]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    8. [8]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    9. [9]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    10. [10]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    11. [11]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    12. [12]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    15. [15]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    16. [16]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    17. [17]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    18. [18]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(5)
  • Abstract views(629)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return