Citation: Zhou-Rong XIAO, Fang HOU, Xiang-Wen ZHANG, Li WANG, Guo-Zhu LI. Preparation of Ordered Mesoporous Nitrogen Doped Carbon Supported Fe2O3 for Oxygen Reduction Reaction[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(2): 243-250. doi: 10.11862/CJIC.2021.024 shu

Preparation of Ordered Mesoporous Nitrogen Doped Carbon Supported Fe2O3 for Oxygen Reduction Reaction

  • Corresponding author: Guo-Zhu LI, gzli@tju.edu.cn
  • Received Date: 30 July 2020
    Revised Date: 27 October 2020

Figures(11)

  • Ordered mesoporous nitrogen doped carbon supported iron oxide was prepared, which effectively reduced the overpotential of oxygen reduction. The physicochemical properties of the as-prepared catalysts were characterized by scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption test, powder X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. In addition, the activity and selectivity for oxygen reduction reaction was tested by rotating disc electrode under alkaline conditions. The results show that iron was loaded in ordered mesoporous nitrogen doped carbon in the form of Fe2O3 after nitrogen pyrolysis, and its specific surface area reached 755 cm2·g-1. The results of Raman and X-ray photoelectron spectroscopy show that the graphitization degree of the catalyst increased with adding iron precursor. The impedance was decreased and its conductivity was increased. Under alkaline conditions, Fe2O3@NC exhibited a 4-electron oxygen reduction reaction, and its initial potential (-0.01 V vs Ag/AgCl) and half slope potential (-0.13 V vs Ag/AgCl) were comparable to those of commercial 20% Pt/C. In addition, the catalyst had superior methanol resistance and excellent constant voltage stability compared with commercial Pt/C. The discharge power of Fe2O3@NC reached 88 mW·cm-2, which was 1.29 times that of commercial Pt/C.
  • 加载中
    1. [1]

      Peng X W, Zhang L, Chen Z X, Zhong L X, Zhao D K, Chi X, Zhao X X, Li L G, Lu X H, Leng K, Liu C B, Liu W, Tang W, Loh K P. Adv Mater., 2019, 31:1900341-1900347

    2. [2]

      Gewirth A A, Varnell J A, DiAscro A M. Chem. Rev., 2018, 118:2313-2339  doi: 10.1021/acs.chemrev.7b00335

    3. [3]

      Zhu C Z, Li H, Fu S F, Du D, Lin Y H. Chem. Soc. Rev., 2016, 45:517-531  doi: 10.1039/C5CS00670H

    4. [4]

      Gao W B, Zhang Z P, Dou M L, Wang F. ACS Catal., 2019, 9:3278-3288

    5. [5]

      Xiao Z R, Hou F, Li Y T, Zhang R R, Shen G Q, Wang L, Zhang X W, Wang Q F, Li G Z. Chem. Eng. Sci., 2019, 207:235-246

    6. [6]

      Liu S, Li G Z, Gao Y Y, Xiao Z R, Zhang J F, Wang Q F, Zhang X W, Wang L. Catal. Sci. Technol., 2017, 7:4007-4016

    7. [7]

      Hu E L, Yu X Y, Chen F, Wu Y D, Hu Y, Lou X W. Adv. Energy Mater., 2018, 8:1702476-1702483

    8. [8]

      Zang Y P, Zhang H M, Zhang X, Liu R R, Liu S W, Wang G Z, Zhang Y X, Zhao H J. Nano Res., 2016, 9:2123-2137

    9. [9]

      Tian Y H, Xu L, Qian J C, Bao J, Yan C, Li H N, Li H M, Zhang S Q. Carbon, 2019, 146:763-771

    10. [10]

      Gao Y Y, Wang L, Li G Z, Xiao Z R, Wang Q F, Zhang X W. Int. J. Hydrogen Energy, 2018, 43:7893-7902

    11. [11]

      Xiao Z R, Hou F, Zhang R R, Li Y T, Yuan G, Pan L, Zou J J, Wang L, Zhang X W, Li G Z. Catal. Sci. Technol., 2019, 9:4581-4587

    12. [12]

      Gao S Y, Fan B F, Feng R, Ye C L, Wei X J, Liu J, Bu X H. Nano Energy, 2017, 40:462-470
       

    13. [13]

      Wang H T, Wang W, Gui M X, Muhammad A, Wang Z Y, Yu Y, Xiao J W, Liu H F. ACS Appl. Mater. Interfaces, 2017, 9:335-344

    14. [14]

      Wang H T, Wang W, Xu Y Y, Dong S, Xiao J W, Wang F, Liu H F, Xia B Y. ACS Appl. Mater. Interfaces, 2017, 9(12):10610-10617  doi: 10.1021/acsami.6b15392

    15. [15]

      He J N, Li B B, Mao J, Liang Y Q, Yang X J, Cui Z D, Zhu S L, Li Z Y. J. Mater. Sci., 2017, 52:10938-10947

    16. [16]

      Dhavale V, Singh S, Nadeema A, Gaikwad S, Kurungot S. Nanoscale, 2015, 7:20117-20125  doi: 10.1039/C7NR90179H

    17. [17]

      Li B, Chen Y, Ge X M, Chai J W, Zhang X, Andy Hor T S, Du G J, Liu Z L, Zhang H, Zong Y. Nanoscale, 2016, 8:5067-5075

    18. [18]

      Guo D K, Han S C, Wang J C, Zhu Y F. Appl. Surf. Sci., 2018, 434:1266-1273

    19. [19]

      Ao X, Zhang W, Li Z S, Li J G, Soule L, Huang X, Chiang W H, Chen H M, Wang C D, Liu M L, Zeng X C. ACS Nano, 2019, 13(10):11853-11862

    20. [20]

      Li Y Q, Huang H Y, Chen S R, Yu X, Wang C, Ma T L. Nano Res., 2019, 12(8):1900-1905

  • 加载中
    1. [1]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    2. [2]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    3. [3]

      Shiqi Zhang Heng Zhang Aiwen Lei . 从物理化学的角度看化学能的利用. University Chemistry, 2025, 40(6): 310-315. doi: 10.12461/PKU.DXHX202408124

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    6. [6]

      Yachao HUANGChuanwang ZENGGuiyong LIUJinming ZENGChao LIUXiaopeng QI . Oxygen vacancies and phosphorus doping enhanced metal-organic framework derived nitrogen-doped carbon-coated Co3O4 bifunctional electrocatalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2251-2260. doi: 10.11862/CJIC.20250133

    7. [7]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    14. [14]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    15. [15]

      Haotong MaMingyu HengYang XuWei BiYingchun MiaoShuning Xiao . Synergistic carbon doping and Cu loading on boron nitride via microwave synthesis for enhanced atmospheric CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(11): 100132-0. doi: 10.1016/j.actphy.2025.100132

    16. [16]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    17. [17]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 100019-0. doi: 10.3866/PKU.WHXB202308052

    18. [18]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    19. [19]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    20. [20]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

Metrics
  • PDF Downloads(12)
  • Abstract views(3750)
  • HTML views(725)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return